Suppr超能文献

基于多重分形和熵的δ波频段神经活动分析揭示了精神分裂症患者功能连接动力学的改变

Multifractal and Entropy-Based Analysis of Delta Band Neural Activity Reveals Altered Functional Connectivity Dynamics in Schizophrenia.

作者信息

Racz Frigyes Samuel, Stylianou Orestis, Mukli Peter, Eke Andras

机构信息

Department of Physiology, Semmelweis University, Budapest, Hungary.

出版信息

Front Syst Neurosci. 2020 Jul 24;14:49. doi: 10.3389/fnsys.2020.00049. eCollection 2020.

Abstract

Dynamic functional connectivity (DFC) was established in the past decade as a potent approach to reveal non-trivial, time-varying properties of neural interactions - such as their multifractality or information content -, that otherwise remain hidden from conventional static methods. Several neuropsychiatric disorders were shown to be associated with altered DFC, with schizophrenia (SZ) being one of the most intensely studied among such conditions. Here we analyzed resting-state electroencephalography recordings of 14 SZ patients and 14 age- and gender-matched healthy controls (HC). We reconstructed dynamic functional networks from delta band (0.5-4 Hz) neural activity and captured their spatiotemporal dynamics in various global network topological measures. The acquired network measure time series were made subject to dynamic analyses including multifractal analysis and entropy estimation. Besides group-level comparisons, we built a classifier to explore the potential of DFC features in classifying individual cases. We found stronger delta-band connectivity, as well as increased variance of DFC in SZ patients. Surrogate data testing verified the true multifractal nature of DFC in SZ, with patients expressing stronger long-range autocorrelation and degree of multifractality when compared to controls. Entropy analysis indicated reduced temporal complexity of DFC in SZ. When using these indices as features, an overall cross-validation accuracy surpassing 89% could be achieved in classifying individual cases. Our results imply that dynamic features of DFC such as its multifractal properties and entropy are potent markers of altered neural dynamics in SZ and carry significant potential not only in better understanding its pathophysiology but also in improving its diagnosis. The proposed framework is readily applicable for neuropsychiatric disorders other than schizophrenia.

摘要

动态功能连接性(DFC)在过去十年中已成为一种有效的方法,用于揭示神经相互作用的非平凡、随时间变化的特性——例如它们的多重分形性或信息含量——而这些特性在传统的静态方法中是隐藏的。已有研究表明,几种神经精神疾病与DFC的改变有关,精神分裂症(SZ)是其中研究最为深入的疾病之一。在此,我们分析了14名SZ患者和14名年龄及性别匹配的健康对照(HC)的静息态脑电图记录。我们从δ波段(0.5 - 4Hz)神经活动中重建动态功能网络,并在各种全局网络拓扑测量中捕捉其时空动态。对获取的网络测量时间序列进行包括多重分形分析和熵估计在内的动态分析。除了组间比较,我们还构建了一个分类器,以探索DFC特征在个体病例分类中的潜力。我们发现SZ患者的δ波段连接性更强,以及DFC的方差增加。替代数据测试验证了SZ中DFC的真正多重分形性质,与对照组相比,患者表现出更强的长程自相关性和多重分形程度。熵分析表明SZ中DFC的时间复杂性降低。当使用这些指标作为特征时,在个体病例分类中可以实现超过89%的总体交叉验证准确率。我们的结果表明,DFC的动态特征,如其多重分形性质和熵,是SZ中神经动力学改变的有力标志物,不仅在更好地理解其病理生理学方面具有重要潜力,而且在改善其诊断方面也具有重要潜力。所提出的框架很容易应用于精神分裂症以外的神经精神疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9387/7394222/92e001d95753/fnsys-14-00049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验