Suppr超能文献

从微生物群落到分布式计算系统。

From Microbial Communities to Distributed Computing Systems.

作者信息

Karkaria Behzad D, Treloar Neythen J, Barnes Chris P, Fedorec Alex J H

机构信息

Department of Cell and Developmental Biology, University College London, London, United Kingdom.

UCL Genetics Institute, University College London, London, United Kingdom.

出版信息

Front Bioeng Biotechnol. 2020 Jul 22;8:834. doi: 10.3389/fbioe.2020.00834. eCollection 2020.

Abstract

A distributed biological system can be defined as a system whose components are located in different subpopulations, which communicate and coordinate their actions through interpopulation messages and interactions. We see that distributed systems are pervasive in nature, performing computation across all scales, from microbial communities to a flock of birds. We often observe that information processing within communities exhibits a complexity far greater than any single organism. Synthetic biology is an area of research which aims to design and build synthetic biological machines from biological parts to perform a defined function, in a manner similar to the engineering disciplines. However, the field has reached a bottleneck in the complexity of the genetic networks that we can implement using monocultures, facing constraints from metabolic burden and genetic interference. This makes building distributed biological systems an attractive prospect for synthetic biology that would alleviate these constraints and allow us to expand the applications of our systems into areas including complex biosensing and diagnostic tools, bioprocess control and the monitoring of industrial processes. In this review we will discuss the fundamental limitations we face when engineering functionality with a monoculture, and the key areas where distributed systems can provide an advantage. We cite evidence from natural systems that support arguments in favor of distributed systems to overcome the limitations of monocultures. Following this we conduct a comprehensive overview of the synthetic communities that have been built to date, and the components that have been used. The potential computational capabilities of communities are discussed, along with some of the applications that these will be useful for. We discuss some of the challenges with building co-cultures, including the problem of competitive exclusion and maintenance of desired community composition. Finally, we assess computational frameworks currently available to aide in the design of microbial communities and identify areas where we lack the necessary tools.

摘要

分布式生物系统可定义为其组件位于不同亚群中的系统,这些亚群通过种群间的信息和相互作用来交流并协调其行动。我们发现分布式系统在自然界中无处不在,在从微生物群落到鸟群的所有尺度上进行计算。我们经常观察到群落内的信息处理表现出远比任何单个生物体复杂得多的复杂性。合成生物学是一个研究领域,旨在以类似于工程学科的方式,从生物部件设计和构建合成生物机器以执行特定功能。然而,该领域在我们使用单一培养物能够实现的遗传网络的复杂性方面已达到瓶颈,面临着代谢负担和遗传干扰的限制。这使得构建分布式生物系统成为合成生物学的一个有吸引力的前景,它将缓解这些限制,并使我们能够将系统的应用扩展到包括复杂生物传感和诊断工具、生物过程控制以及工业过程监测等领域。在本综述中,我们将讨论在使用单一培养物设计功能时所面临的基本限制,以及分布式系统可以提供优势的关键领域。我们引用自然系统中的证据来支持有利于分布式系统克服单一培养物局限性的观点。在此之后,我们对迄今为止构建的合成群落以及所使用的组件进行全面概述。讨论了群落潜在的计算能力以及这些能力将对哪些应用有用。我们讨论了构建共培养物时的一些挑战,包括竞争排斥问题和维持所需群落组成的问题。最后,我们评估目前可用于辅助微生物群落设计的计算框架,并确定我们缺乏必要工具的领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/443d/7387671/71ce5fa26661/fbioe-08-00834-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验