Suppr超能文献

基于多期 CT 扫描的肝细胞癌和肝内胆管细胞癌分类。

Classification of hepatocellular carcinoma and intrahepatic cholangiocarcinoma based on multi-phase CT scans.

机构信息

Data Science Research Center, Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.

Advanced Research Center for Computational Simulation, Chiang Mai University, Chiang Mai, 50200, Thailand.

出版信息

Med Biol Eng Comput. 2020 Oct;58(10):2497-2515. doi: 10.1007/s11517-020-02229-2. Epub 2020 Aug 13.

Abstract

Liver and bile duct cancers are leading causes of worldwide cancer death. The most common ones are hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Influencing factors and prognosis of HCC and ICC are different. Precise classification of these two liver cancers is essential for treatment and prevention plans. The aim of this study is to develop a machine-based method that differentiates between the two types of liver cancers from multi-phase abdominal computerized tomography (CT) scans. The proposed method consists of two major steps. In the first step, the liver is segmented from the original images using a convolutional neural network model, together with task-specific pre-processing and post-processing techniques. In the second step, by looking at the intensity histograms of the segmented images, we extract features from regions that are discriminating between HCC and ICC, and use them as an input for classification using support vector machine model. By testing on a dataset of labeled multi-phase CT scans provided by Maharaj Nakorn Chiang Mai Hospital, Thailand, we have obtained 88% in classification accuracy. Our proposed method has a great potential in helping radiologists diagnosing liver cancer.

摘要

肝癌和胆管癌是全球癌症死亡的主要原因。最常见的是肝细胞癌(HCC)和肝内胆管癌(ICC)。HCC 和 ICC 的影响因素和预后不同。对这两种肝癌进行准确分类对于治疗和预防计划至关重要。本研究旨在开发一种基于机器的方法,从多期腹部计算机断层扫描(CT)中区分这两种肝癌。该方法由两个主要步骤组成。在第一步中,使用卷积神经网络模型以及特定于任务的预处理和后处理技术,从原始图像中分割肝脏。在第二步中,通过查看分割图像的强度直方图,我们从区分 HCC 和 ICC 的区域中提取特征,并将其用作支持向量机模型分类的输入。通过在泰国玛哈沙拉堪清迈医院提供的标记多期 CT 扫描数据集上进行测试,我们的分类准确率达到了 88%。我们提出的方法在帮助放射科医生诊断肝癌方面具有很大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验