Suppr超能文献

Normalization of carbohydrate-induced thermogenesis by fructose in insulin-resistant states.

作者信息

Simonson D C, Tappy L, Jequier E, Felber J P, DeFronzo R A

机构信息

Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.

出版信息

Am J Physiol. 1988 Feb;254(2 Pt 1):E201-7. doi: 10.1152/ajpendo.1988.254.2.E201.

Abstract

To examine whether defects in carbohydrate oxidation and thermogenesis in aging, obesity, and diabetes are secondary to impaired insulin action or to a primary defect in intracellular metabolism, we compared substrate oxidation and energy expenditure in 9 younger, 9 older, 9 obese, and 10 non-insulin-dependent diabetic subjects after the ingestion of 75 g of glucose or fructose (a monosaccharide whose transport into the cell and subsequent metabolism are independent of insulin). In young control subjects fructose produced a significantly greater increase in carbohydrate oxidation and energy expenditure than glucose despite significantly lower plasma glucose and insulin levels. In aged, obese, and diabetic individuals the increments in carbohydrate oxidation and energy expenditure after glucose ingestion were significantly imparied versus the younger controls. After fructose ingestion the increase in carbohydrate oxidation in the three insulin-resistant groups remained below that observed in the younger volunteers, whereas carbohydrate-induced thermogenesis was enhanced to levels that were comparable with those seen in the younger group. These data suggest that 1) the stimulation of thermogenesis after fructose ingestion is related to an augmentation of intracellular metabolism rather than an increase in the plasma insulin concentration per se, 2) the insulin resistance of aging, obesity, and diabetes is associated with a defect in intracellular carbohydrate oxidation, and 3) the cellular mechanisms involved in carbohydrate-induced thermogenesis are not primarily impaired in insulin-resistant states.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验