Suppr超能文献

在压力控制通气中,通过募集操作预测肺力学。

Prediction of lung mechanics throughout recruitment maneuvers in pressure-controlled ventilation.

机构信息

Mechanical Engineering Department, University of Canterbury, Christchurch, New Zealand.

Auckland Bioengineering Institute, Auckland University, Auckland, New Zealand.

出版信息

Comput Methods Programs Biomed. 2020 Dec;197:105696. doi: 10.1016/j.cmpb.2020.105696. Epub 2020 Aug 5.

Abstract

Mechanical ventilation (MV) is a core therapy in the intensive care unit (ICU). Some patients rely on MV to support breathing. However, it is a difficult therapy to optimise, where inter- and intra- patient variability leads to significantly increased risk of lung damage. Excessive volume and/or pressure can cause volutrauma or barotrauma, resulting in increased length of time on ventilation, length of stay, cost and mortality. Virtual patient modelling has changed care in other areas of ICU medicine, enabling more personalized and optimal care, and have emerged for volume-controlled MV. This research extends this MV virtual patient model into the increasingly more commonly used pressure-controlled MV mode. The simulation methods are extended to use pressure, instead of both volume and flow, as the known input, increasing the output variables to be predicted (flow and its integral, volume). The model and methods are validated using data from N = 14 pressure-control ventilated patients during recruitment maneuvers, with n = 558 prediction tests over changes of PEEP ranging from 2 to 16 cmHO. Prediction errors for peak inspiratory volume for an increase of 16 cmHO were 80 [30 - 140] mL (15.9 [8.4 - 31.0]%), with RMS fitting errors of 0.05 [0.03 - 0.12] L. These results show very good prediction accuracy able to guide personalised MV care.

摘要

机械通气(MV)是重症监护病房(ICU)的核心治疗方法。有些患者依赖 MV 来支持呼吸。然而,这是一种很难优化的治疗方法,患者之间和患者内部的可变性导致肺部损伤的风险显著增加。过多的容量和/或压力会导致容积伤或气压伤,导致通气时间延长、住院时间延长、成本增加和死亡率增加。虚拟患者建模已经改变了 ICU 医学其他领域的护理方式,实现了更个性化和更优化的护理,并已应用于容量控制 MV。本研究将这种 MV 虚拟患者模型扩展到越来越常用的压力控制 MV 模式。模拟方法扩展到使用压力,而不是体积和流量,作为已知输入,增加了要预测的输出变量(流量及其积分、体积)。该模型和方法使用 N=14 名在募集操作期间接受压力控制通气的患者的数据进行验证,在 PEEP 从 2 到 16 cmHO 的变化范围内进行了 n=558 次预测测试。PEEP 增加 16 cmHO 时,潮气量峰值的预测误差为 80 [30-140]mL(15.9 [8.4-31.0]%),RMS 拟合误差为 0.05 [0.03-0.12]L。这些结果显示出非常好的预测准确性,能够指导个性化 MV 护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验