School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8SQ, United Kingdom.
Spat Spatiotemporal Epidemiol. 2020 Aug;34:100353. doi: 10.1016/j.sste.2020.100353. Epub 2020 May 16.
Population-level disease risk varies in space and time, and is typically estimated using aggregated disease count data relating to a set of non-overlapping areal units for multiple consecutive time periods. A large research base of statistical models and corresponding software has been developed for such data, with most analyses being undertaken in a Bayesian setting using either Markov chain Monte Carlo (MCMC) simulation or integrated nested Laplace approximations (INLA). This paper presents a tutorial for undertaking spatio-temporal disease modelling using MCMC simulation, utilising the CARBayesST package in the R software environment. The tutorial describes the complete modelling journey, starting with data input, wrangling and visualisation, before focusing on model fitting, model assessment and results presentation. It is illustrated by a new case study of pneumonia mortality at the local authority level in England, and answers important public health questions including the effect of covariate risk factors, spatio-temporal trends, and health inequalities.
人群疾病风险在空间和时间上存在差异,通常使用与多个连续时间段内一组不重叠的区域单元相关的汇总疾病计数数据来估计。已经为这种数据开发了大量的统计模型和相应的软件基础,并且大多数分析都是在贝叶斯框架内使用马尔可夫链蒙特卡罗(MCMC)模拟或集成嵌套拉普拉斯近似(INLA)进行的。本文提供了一个使用 MCMC 模拟进行时空疾病建模的教程,该教程利用了 R 软件环境中的 CARBayesST 包。该教程描述了完整的建模过程,从数据输入、整理和可视化开始,然后专注于模型拟合、模型评估和结果展示。它通过英格兰地方当局一级肺炎死亡率的新案例研究进行说明,并回答了包括协变量风险因素、时空趋势和健康不平等在内的重要公共卫生问题。