Umeyama Tomokazu, Igarashi Kensho, Sasada Daiki, Ishida Keiichi, Koganezawa Tomoyuki, Ohtani Shunsuke, Tanaka Kazuo, Imahori Hiroshi
Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan.
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39236-39244. doi: 10.1021/acsami.0c10834. Epub 2020 Aug 21.
Phase-separated structures in photoactive layers composed of electron donors and acceptors in organic photovoltaics (OPVs) generally exert a profound impact on the device performance. In this study, nonfullerene acceptors (NFAs) where a heteronanographene central core was furnished with branched alkoxy chains of different lengths, TACIC-EH, TACIC-BO, and TACIC-HD, were prepared to adjust the aggregation tendency and systematically probe the relationships of film structures with photophysical and photovoltaic properties. The side-chain length showed negligible effects on the absorption properties and energy levels of TACICs. In addition, regardless of the chain length, all TACIC films exhibited characteristically long singlet exciton lifetimes (1330-2330 ps) compared to those in solution (≤220 ps). Using a conjugated polymer donor, PBDB-T, the best OPV performance was achieved with TACIC-BO that contained medium-length chains, exhibiting a power conversion efficiency (PCE) of 9.92%. TACIC-HD with the longest chains showed deteriorated electron mobility due to the long insulating alkoxy groups. Therefore, the PBDB-T:TACIC-HD-based device revealed a low charge collection efficiency and PCE (8.21%) relative to the PBDB-T:TACIC-BO-based device, but their film morphologies were analogous. Meanwhile, TACIC-EH with the shortest chains showed low solubility and formed micrometer-sized large aggregates in the blend film with PBDB-T. Although the charge collection efficiency of PBDB-T:TACIC-EH was lower than that of PBDB-T:TACIC-BO, the efficiencies of exciton diffusion to the donor-acceptor interface were sufficiently high (>98%) owing to the elongated singlet exciton lifetime of TACIC-EH. The PCE of the PBDB-T:TACIC-EH-based device remained moderate (7.10%). Therefore, TACICs with the long singlet exciton lifetimes in the films provide a clear guideline for NFAs with low sensitivity of OPV device performance to the blend film structures, which is advantageous for large-scale OPV production with high reproducibility.
有机光伏(OPV)中由电子供体和受体组成的光活性层中的相分离结构通常对器件性能产生深远影响。在本研究中,制备了具有不同长度支链烷氧基的异质纳米石墨烯中心核的非富勒烯受体(NFA),即TACIC-EH、TACIC-BO和TACIC-HD,以调节聚集趋势并系统地探究薄膜结构与光物理和光伏性质之间的关系。侧链长度对TACIC的吸收性质和能级影响可忽略不计。此外,无论链长如何,与溶液中的情况(≤220 ps)相比,所有TACIC薄膜都表现出特征性的长单线态激子寿命(1330 - 2330 ps)。使用共轭聚合物供体PBDB-T,含中等长度链的TACIC-BO实现了最佳的OPV性能,功率转换效率(PCE)为9.92%。链最长的TACIC-HD由于长的绝缘烷氧基导致电子迁移率下降。因此,相对于基于PBDB-T:TACIC-BO的器件,基于PBDB-T:TACIC-HD的器件显示出低的电荷收集效率和PCE(8.21%),但它们的薄膜形态相似。同时,链最短的TACIC-EH在与PBDB-T的共混薄膜中表现出低溶解度并形成微米级大聚集体。尽管PBDB-T:TACIC-EH的电荷收集效率低于PBDB-T:TACIC-BO,但由于TACIC-EH的单线态激子寿命延长,激子扩散到供体 - 受体界面的效率足够高(>98%)。基于PBDB-T:TACIC-EH的器件的PCE保持适中(7.10%)。因此,薄膜中具有长单线态激子寿命的TACIC为OPV器件性能对共混薄膜结构低敏感性的NFA提供了明确的指导方针,这有利于具有高重现性的大规模OPV生产。