Suppr超能文献

利用高光谱航空图像和密集同步地面观测比较估算富营养化淡水中浊度和蓝藻浓度的卫星反射率算法

Comparison of satellite reflectance algorithms for estimating turbidity and cyanobacterial concentrations in productive freshwaters using hyperspectral aircraft imagery and dense coincident surface observations.

作者信息

Beck Richard, Xu Min, Zhan Shengan, Johansen Richard, Liu Hongxing, Tong Susanna, Yang Bo, Shu Song, Wu Qiusheng, Wang Shujie, Berling Kevin, Murray Andrew, Emery Erich, Reif Molly, Harwood Joseph, Young Jade, Nietch Christopher, Macke Dana, Martin Mark, Stillings Garrett, Stumpf Richard, Su Haibin, Ye Zhaoxia, Huang Yan

机构信息

Department of Geography, University of Cincinnati, Cincinnati, OH, United States.

U.S. Army Corps of Engineers, Great Lakes and Ohio River Division, Cincinnati, OH, United States.

出版信息

J Great Lakes Res. 2019 Jun 1;45(3):413-433. doi: 10.1016/j.jglr.2018.09.001.

Abstract

We analyzed 37 satellite reflectance algorithms and 321 variants for five satellites for estimating turbidity in a freshwater inland lake in Ohio using coincident real hyperspectral aircraft imagery converted to relative reflectance and dense coincident surface observations. This study is part of an effort to develop simple proxies for turbidity and algal blooms and to evaluate their performance and portability between satellite imagers for regional operational turbidity and algal bloom monitoring. Turbidity algorithms were then applied to synthetic satellite images and compared to in situ measurements of turbidity, chlorophyll-a (Chl-a), total suspended solids (TSS) and phycocyanin as an indicator of cyanobacterial/blue green algal (BGA) abundance. Several turbidity algorithms worked well with real Compact Airborne Spectrographic Imager (CASI) and synthetic WorldView-2, Sentinel-2 and Sentinel-3/MERIS/OLCI imagery. A simple red band algorithm for MODIS imagery and a new fluorescence line height algorithm for Landsat-8 imagery had limited performance with regard to turbidity estimation. Blue-Green Algae/Phycocyanin (BGA/PC) and Chl-a algorithms were the most widely applicable algorithms for turbidity estimation because strong co-variance of turbidity, TSS, Chl-a, and BGA made them mutual proxies in this experiment.

摘要

我们分析了37种卫星反射率算法和321种变体,涉及五颗卫星,利用同步的真实高光谱飞机图像(转换为相对反射率)和密集的同步地面观测数据,来估算俄亥俄州一个淡水内陆湖的浊度。本研究是开发浊度和藻华简单替代指标,并评估其在不同卫星成像仪之间用于区域业务浊度和藻华监测的性能及可移植性工作的一部分。然后将浊度算法应用于合成卫星图像,并与现场测量的浊度、叶绿素a(Chl-a)、总悬浮固体(TSS)以及作为蓝藻/蓝绿藻(BGA)丰度指标的藻蓝蛋白进行比较。几种浊度算法在真实的紧凑型机载光谱成像仪(CASI)以及合成的WorldView-2、哨兵-2和哨兵-3/MERIS/OLCI图像上表现良好。一种用于MODIS图像的简单红波段算法和一种用于Landsat-8图像的新荧光线高算法在浊度估计方面性能有限。蓝绿藻/藻蓝蛋白(BGA/PC)和Chl-a算法是浊度估计中应用最广泛的算法,因为在本实验中,浊度、TSS、Chl-a和BGA之间存在很强的协方差,使它们相互成为替代指标。

相似文献

3
Cyanobacterial pigment concentrations in inland waters: Novel semi-analytical algorithms for multi- and hyperspectral remote sensing data.
Sci Total Environ. 2022 Jan 20;805:150423. doi: 10.1016/j.scitotenv.2021.150423. Epub 2021 Sep 20.
5
Monitoring the vertical distribution of HABs using hyperspectral imagery and deep learning models.
Sci Total Environ. 2021 Nov 10;794:148592. doi: 10.1016/j.scitotenv.2021.148592. Epub 2021 Jun 19.
6
A novel hybrid cyanobacteria mapping approach for inland reservoirs using Sentinel-3 imagery.
Harmful Algae. 2025 Apr;144:102836. doi: 10.1016/j.hal.2025.102836. Epub 2025 Mar 3.
7
Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
Water Res. 2023 Aug 15;242:120076. doi: 10.1016/j.watres.2023.120076. Epub 2023 May 23.
9
Remote sensing of cyanobacterial blooms in inland waters: present knowledge and future challenges.
Sci Bull (Beijing). 2019 Oct 30;64(20):1540-1556. doi: 10.1016/j.scib.2019.07.002. Epub 2019 Jul 2.

本文引用的文献

2
Eutrophication and Harmful Algal Blooms: A Scientific Consensus.
Harmful Algae. 2008 Dec;8(1):3-13. doi: 10.1016/j.hal.2008.08.006.
4
Challenges for mapping cyanotoxin patterns from remote sensing of cyanobacteria.
Harmful Algae. 2016 Apr;54:160-173. doi: 10.1016/j.hal.2016.01.005.
5
Harmful algal blooms and climate change: Learning from the past and present to forecast the future.
Harmful Algae. 2015 Nov 1;49:68-93. doi: 10.1016/j.hal.2015.07.009. Epub 2015 Sep 22.
9
Satellite remote sensing of harmful algal blooms (HABs) and a potential synthesized framework.
Sensors (Basel). 2012;12(6):7778-803. doi: 10.3390/s120607778. Epub 2012 Jun 7.
10
Interannual variability of cyanobacterial blooms in Lake Erie.
PLoS One. 2012;7(8):e42444. doi: 10.1371/journal.pone.0042444. Epub 2012 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验