Cooperative Innovation Center of Internet Healthcare, Zhengzhou University, Zhengzhou 450000, China.
School of Information Engineering, Zhengzhou University, Zhengzhou 450000, China.
Comput Intell Neurosci. 2020 Jul 29;2020:1242781. doi: 10.1155/2020/1242781. eCollection 2020.
Ultrasonography is widely used in the clinical diagnosis of thyroid nodules. Ultrasound images of thyroid nodules have different appearances, interior features, and blurred borders that are difficult for a physician to diagnose into malignant or benign types merely through visual recognition. The development of artificial intelligence, especially deep learning, has led to great advances in the field of medical image diagnosis. However, there are some challenges to achieve precision and efficiency in the recognition of thyroid nodules. In this work, we propose a deep learning architecture, you only look once v3 dense multireceptive fields convolutional neural network (YOLOv3-DMRF), based on YOLOv3. It comprises a DMRF-CNN and multiscale detection layers. In DMRF-CNN, we integrate dilated convolution with different dilation rates to continue passing the edge and the texture features to deeper layers. Two different scale detection layers are deployed to recognize the different sizes of the thyroid nodules. We used two datasets to train and evaluate the YOLOv3-DMRF during the experiments. One dataset includes 699 original ultrasound images of thyroid nodules collected from a local health physical center. We obtained 10,485 images after data augmentation. Another dataset is an open-access dataset that includes ultrasound images of 111 malignant and 41 benign thyroid nodules. Average precision (AP) and mean average precision (mAP) are used as the metrics for quantitative and qualitative evaluations. We compared the proposed YOLOv3-DMRF with some state-of-the-art deep learning networks. The experimental results show that YOLOv3-DMRF outperforms others on mAP and detection time on both the datasets. Specifically, the values of mAP and detection time were 90.05 and 95.23% and 3.7 and 2.2 s, respectively, on the two test datasets. Experimental results demonstrate that the proposed YOLOv3-DMRF is efficient for detection and recognition of thyroid nodules for ultrasound images.
超声检查广泛应用于甲状腺结节的临床诊断。甲状腺结节的超声图像具有不同的外观、内部特征和模糊边界,单凭医生的视觉识别很难将其诊断为恶性或良性。人工智能,特别是深度学习的发展,使得医学图像诊断领域取得了重大进展。然而,在甲状腺结节的识别中实现精度和效率仍然存在一些挑战。在这项工作中,我们提出了一种基于 YOLOv3 的深度学习架构,即你只看一次 v3 密集多接收场卷积神经网络(YOLOv3-DMRF)。它包括一个 DMRF-CNN 和多尺度检测层。在 DMRF-CNN 中,我们集成了具有不同扩张率的扩张卷积,以将边缘和纹理特征传递到更深的层。部署了两个不同尺度的检测层来识别不同大小的甲状腺结节。在实验中,我们使用了两个数据集来训练和评估 YOLOv3-DMRF。一个数据集包括从当地健康物理中心收集的 699 张原始甲状腺结节超声图像。经过数据增强后,我们获得了 10485 张图像。另一个数据集是一个开放获取的数据集,其中包括 111 个恶性和 41 个良性甲状腺结节的超声图像。平均精度(AP)和平均平均精度(mAP)被用作定量和定性评估的指标。我们将提出的 YOLOv3-DMRF 与一些最先进的深度学习网络进行了比较。实验结果表明,YOLOv3-DMRF 在两个数据集上的 mAP 和检测时间上都优于其他网络。具体来说,在两个测试数据集上,mAP 和检测时间的取值分别为 90.05%和 95.23%和 3.7 秒和 2.2 秒。实验结果表明,所提出的 YOLOv3-DMRF 对于超声图像中甲状腺结节的检测和识别是有效的。