Suppr超能文献

用于非质子锂氧电池的稳定氨基磺酸酯和磺酰胺基电解质的分子设计

Molecular Design of Stable Sulfamide- and Sulfonamide-based Electrolytes for Aprotic Li-O Batteries.

作者信息

Feng Shuting, Huang Mingjun, Lamb Jessica R, Zhang Wenxu, Tatara Ryoichi, Zhang Yirui, Zhu Yun Guang, Perkinson Collin F, Johnson Jeremiah A, Shao-Horn Yang

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

These authors contributed equally.

出版信息

Chem. 2019 Oct 10;5(10):2630-2641. doi: 10.1016/j.chempr.2019.07.003. Epub 2019 Jul 25.

Abstract

Electrolyte instability is one of the most challenging impediments to enabling Lithium-Oxygen (Li-O) batteries for practical use. The use of physical organic chemistry principles to rationally design new molecular components may enable the discovery of electrolytes with stability profiles that cannot be achieved with existing formulations. Here, we report on the development of sulfamide- and sulfonamide-based small molecules that are liquids at room temperature, capable of dissolving reasonably high concentration of Li salts (e.g., LiTFSI), and are exceptionally stable under the harsh chemical and electrochemical conditions of aprotic Li-O batteries. In particular, ,-dimethyl-trifluoromethanesulfonamide was found to be highly resistant to chemical degradation by peroxide and superoxide, stable against electrochemical oxidation up to 4.5 V, and stable for > 90 cycles in a Li-O cell when cycled at < 4.2 V. This study provides guiding principles for the development of next-generation electrolyte components based on sulfamides and sulfonamides.

摘要

电解质不稳定是阻碍锂氧(Li-O)电池实际应用的最具挑战性的障碍之一。运用物理有机化学原理合理设计新的分子成分,可能会发现具有现有配方无法实现的稳定性的电解质。在此,我们报告了基于磺酰胺和磺酰亚胺的小分子的开发情况,这些小分子在室温下为液体,能够溶解相当高浓度的锂盐(如LiTFSI),并且在非质子Li-O电池的苛刻化学和电化学条件下异常稳定。特别地,发现α,α-二甲基三氟甲磺酰胺对过氧化物和超氧化物引起的化学降解具有高度抗性,在高达4.5 V的电压下对电化学氧化稳定,并且在Li-O电池中以<4.2 V循环时可稳定循环>90次。本研究为基于磺酰胺和磺酰亚胺的下一代电解质成分的开发提供了指导原则。

相似文献

1
Molecular Design of Stable Sulfamide- and Sulfonamide-based Electrolytes for Aprotic Li-O Batteries.
Chem. 2019 Oct 10;5(10):2630-2641. doi: 10.1016/j.chempr.2019.07.003. Epub 2019 Jul 25.
2
Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
ChemSusChem. 2015 Sep 21;8(18):3139-45. doi: 10.1002/cssc.201500600. Epub 2015 Aug 6.
3
Potassium Superoxide: A Unique Alternative for Metal-Air Batteries.
Acc Chem Res. 2018 Sep 18;51(9):2335-2343. doi: 10.1021/acs.accounts.8b00332. Epub 2018 Sep 4.
4
Carbon Cathodes in Rechargeable Lithium-Oxygen Batteries Based on Double-Lithium-Salt Electrolytes.
ChemSusChem. 2016 Jun 8;9(11):1249-54. doi: 10.1002/cssc.201600177. Epub 2016 Apr 27.
5
Aprotic Lithium-Oxygen Batteries Based on Nonsolid Discharge Products.
J Am Chem Soc. 2024 Jan 17;146(2):1305-1317. doi: 10.1021/jacs.3c08656. Epub 2024 Jan 3.
6
Li O Formation Electrochemistry and Its Influence on Oxygen Reduction/Evolution Reaction Kinetics in Aprotic Li-O Batteries.
Small Methods. 2022 Jan;6(1):e2101280. doi: 10.1002/smtd.202101280. Epub 2021 Nov 21.
7
Mechanistic origin of low polarization in aprotic Na-O batteries.
Phys Chem Chem Phys. 2017 May 21;19(19):12375-12383. doi: 10.1039/c7cp01928a. Epub 2017 May 2.
9
Insights into the LiI Redox Mediation in Aprotic Li-O Batteries: Solvation Effects and Singlet Oxygen Evolution.
ACS Appl Mater Interfaces. 2023 Dec 27;15(51):59348-59357. doi: 10.1021/acsami.3c12330. Epub 2023 Dec 13.
10
Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
Small. 2018 Jul;14(27):e1800078. doi: 10.1002/smll.201800078. Epub 2018 May 11.

引用本文的文献

2
Ether-Based High-Voltage Lithium Metal Batteries: The Road to Commercialization.
ACS Nano. 2024 Apr 23;18(16):10726-10737. doi: 10.1021/acsnano.4c00110. Epub 2024 Apr 11.
3
Recent advances in electrolyte molecular design for alkali metal batteries.
Chem Sci. 2024 Feb 6;15(12):4238-4274. doi: 10.1039/d3sc06650a. eCollection 2024 Mar 20.
4
A rechargeable calcium-oxygen battery that operates at room temperature.
Nature. 2024 Feb;626(7998):313-318. doi: 10.1038/s41586-023-06949-x. Epub 2024 Feb 7.
5
Engineering considerations for practical lithium-air electrolytes.
Faraday Discuss. 2024 Jan 29;248(0):355-380. doi: 10.1039/d3fd00091e.
6
Guiding maps of solvents for lithium-sulfur batteries via a computational data-driven approach.
Patterns (N Y). 2023 Jul 25;4(9):100799. doi: 10.1016/j.patter.2023.100799. eCollection 2023 Sep 8.
7
A non-Newtonian fluid quasi-solid electrolyte designed for long life and high safety Li-O batteries.
Nat Commun. 2023 Apr 20;14(1):2268. doi: 10.1038/s41467-023-37998-5.

本文引用的文献

1
A methyl pivalate based electrolyte for non-aqueous lithium-oxygen batteries.
Chem Commun (Camb). 2017 Sep 19;53(75):10426-10428. doi: 10.1039/c7cc04702a.
2
2,4-Dimethoxy-2,4-dimethylpentan-3-one: An Aprotic Solvent Designed for Stability in Li-O Cells.
J Am Chem Soc. 2017 Aug 30;139(34):11690-11693. doi: 10.1021/jacs.7b06414. Epub 2017 Aug 18.
3
Inhibiting Polysulfide Shuttle in Lithium-Sulfur Batteries through Low-Ion-Pairing Salts and a Triflamide Solvent.
Angew Chem Int Ed Engl. 2017 May 22;56(22):6192-6197. doi: 10.1002/anie.201701026. Epub 2017 May 2.
4
The effect of water on discharge product growth and chemistry in Li-O2 batteries.
Phys Chem Chem Phys. 2016 Sep 28;18(36):24944-53. doi: 10.1039/c6cp03695c. Epub 2016 Aug 25.
5
Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium-Oxygen Battery.
Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6892-5. doi: 10.1002/anie.201602142. Epub 2016 May 4.
6
Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions.
Nat Mater. 2016 Aug;15(8):882-8. doi: 10.1038/nmat4629. Epub 2016 Apr 25.
7
Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries.
J Phys Chem Lett. 2013 Sep 5;4(17):2989-93. doi: 10.1021/jz401659f. Epub 2013 Aug 23.
8
A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries.
J Electrochem Soc. 2015;162(7):A1236-A1245. doi: 10.1149/2.0481507jes. Epub 2015 Apr 9.
9
Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
J Phys Chem Lett. 2011 May 19;2(10):1161-6. doi: 10.1021/jz200352v. Epub 2011 Apr 27.
10
Limitations in Rechargeability of Li-O2 Batteries and Possible Origins.
J Phys Chem Lett. 2012 Oct 18;3(20):3043-7. doi: 10.1021/jz301359t. Epub 2012 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验