Suppr超能文献

探索 F-肌动蛋白/CPEB3 相互作用及其在长时记忆分子机制中的可能作用。

Exploring the F-actin/CPEB3 interaction and its possible role in the molecular mechanism of long-term memory.

机构信息

Center for Theoretical Biological Physics, Rice University, Houston, TX 77005.

Department of Chemistry, Rice University, Houston, TX 77005.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22128-22134. doi: 10.1073/pnas.2012964117. Epub 2020 Aug 26.

Abstract

Dendritic spines are tiny membranous protrusions on the dendrites of neurons. Dendritic spines change shape in response to input signals, thereby strengthening the connections between neurons. The growth and stabilization of dendritic spines is thought to be essential for maintaining long-term memory. Actin cytoskeleton remodeling in spines is a key element of their formation and growth. More speculatively, the aggregation of CPEB3, a functional prion that binds RNA, has been reported to be involved in the maintenance of long-term memory. Here we study the interaction between actin and CPEB3 and propose a molecular model for the complex structure of CPEB3 and an actin filament (F-actin). The results of our computational modeling, including both energetic and structural analyses, are compared with novel data from peptide array experiments. Our model of the CPEB3/F-actin interaction suggests that F-actin potentially triggers the aggregation-prone structural transition of a short CPEB3 sequence by zipping it into a beta-hairpin form. We also propose that the CPEB3/F-actin interaction might be regulated by the SUMOylation of CPEB3, based on bioinformatic searches for potential SUMOylation sites as well as SUMO interacting motifs in CPEB3. On the basis of these results and the existing literature, we put forward a possible molecular mechanism underlying long-term memory that involves CPEB3's binding to actin, its aggregation, and its regulation by SUMOylation.

摘要

树突棘是神经元树突上的微小膜状突起。树突棘的形状会响应输入信号发生变化,从而增强神经元之间的连接。树突棘的生长和稳定被认为是维持长期记忆的关键。棘突中肌动蛋白细胞骨架的重塑是其形成和生长的关键要素。更推测的是,结合 RNA 的功能性朊病毒 CPEB3 的聚集被报道与长期记忆的维持有关。在这里,我们研究了肌动蛋白与 CPEB3 之间的相互作用,并提出了 CPEB3 和肌动蛋白丝(F-actin)复合物的结构模型。我们的计算建模结果,包括能量和结构分析,与肽阵列实验的新数据进行了比较。我们的 CPEB3/F-actin 相互作用模型表明,F-actin 可能通过将其卷曲成β发夹形式来触发短 CPEB3 序列易于聚集的结构转变。我们还提出,基于对 CPEB3 中潜在 SUMO 化位点和 SUMO 相互作用基序的生物信息学搜索,CPEB3/F-actin 相互作用可能受到 CPEB3 的 SUMO 化调节。基于这些结果和现有文献,我们提出了一个可能的分子机制,涉及 CPEB3 与肌动蛋白的结合、其聚集以及 SUMO 化的调节。

相似文献

1
Exploring the F-actin/CPEB3 interaction and its possible role in the molecular mechanism of long-term memory.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22128-22134. doi: 10.1073/pnas.2012964117. Epub 2020 Aug 26.
2
The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton.
Cell Rep. 2015 Jun 23;11(11):1772-85. doi: 10.1016/j.celrep.2015.04.060. Epub 2015 Jun 11.
3
SUMOylation Is an Inhibitory Constraint that Regulates the Prion-like Aggregation and Activity of CPEB3.
Cell Rep. 2015 Jun 23;11(11):1694-702. doi: 10.1016/j.celrep.2015.04.061. Epub 2015 Jun 11.
4
A structural dynamics model for how CPEB3 binding to SUMO2 can regulate translational control in dendritic spines.
PLoS Comput Biol. 2022 Nov 8;18(11):e1010657. doi: 10.1371/journal.pcbi.1010657. eCollection 2022 Nov.
5
Mapping the Fibril Core of the Prion Subdomain of the Mammalian CPEB3 that is Involved in Long Term Memory Retention.
J Mol Biol. 2021 Jul 23;433(15):167084. doi: 10.1016/j.jmb.2021.167084. Epub 2021 May 31.
6
Role of CPEB3 protein in learning and memory: new insights from synaptic plasticity.
Aging (Albany NY). 2020 Jul 2;12(14):15169-15182. doi: 10.18632/aging.103404.
8
Actin Cytoskeleton Role in the Maintenance of Neuronal Morphology and Long-Term Memory.
Cells. 2021 Jul 15;10(7):1795. doi: 10.3390/cells10071795.
10
CPEB3 inhibits translation of mRNA targets by localizing them to P bodies.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18078-18087. doi: 10.1073/pnas.1815275116. Epub 2019 Aug 15.

引用本文的文献

1
Role of CPEBs in Learning and Memory.
J Neurochem. 2025 Sep;169(9):e70226. doi: 10.1111/jnc.70226.
2
Frustration in physiology and molecular medicine.
Mol Aspects Med. 2025 Jun;103:101362. doi: 10.1016/j.mam.2025.101362. Epub 2025 Apr 23.
3
Generating the polymorph landscapes of amyloid fibrils using AI: RibbonFold.
Proc Natl Acad Sci U S A. 2025 Apr 22;122(16):e2501321122. doi: 10.1073/pnas.2501321122. Epub 2025 Apr 15.
4
Frustration In Physiology And Molecular Medicine.
ArXiv. 2025 Feb 6:arXiv:2502.03851v1.
5
DEHP-Induced Glioblastoma in Zebrafish Is Associated with Circadian Dysregulation of PER3.
Toxics. 2024 Nov 21;12(12):835. doi: 10.3390/toxics12120835.
8
A structural dynamics model for how CPEB3 binding to SUMO2 can regulate translational control in dendritic spines.
PLoS Comput Biol. 2022 Nov 8;18(11):e1010657. doi: 10.1371/journal.pcbi.1010657. eCollection 2022 Nov.
9
Vectorial channeling as a mechanism for translational control by functional prions and condensates.
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47). doi: 10.1073/pnas.2115904118.

本文引用的文献

1
Cryo-EM structure of a neuronal functional amyloid implicated in memory persistence in .
Science. 2020 Mar 13;367(6483):1230-1234. doi: 10.1126/science.aba3526.
2
Exploring the interplay between fibrillization and amorphous aggregation channels on the energy landscapes of tau repeat isoforms.
Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4125-4130. doi: 10.1073/pnas.1921702117. Epub 2020 Feb 6.
3
Assemblies of calcium/calmodulin-dependent kinase II with actin and their dynamic regulation by calmodulin in dendritic spines.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18937-18942. doi: 10.1073/pnas.1911452116. Epub 2019 Aug 27.
4
CPEB3 inhibits translation of mRNA targets by localizing them to P bodies.
Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):18078-18087. doi: 10.1073/pnas.1815275116. Epub 2019 Aug 15.
5
Surveying the Energy Landscapes of Aβ Fibril Polymorphism.
J Phys Chem B. 2018 Dec 13;122(49):11414-11430. doi: 10.1021/acs.jpcb.8b07364. Epub 2018 Oct 1.
6
Plasticity of Spine Structure: Local Signaling, Translation and Cytoskeletal Reorganization.
Front Synaptic Neurosci. 2018 Aug 29;10:29. doi: 10.3389/fnsyn.2018.00029. eCollection 2018.
7
ComplexContact: a web server for inter-protein contact prediction using deep learning.
Nucleic Acids Res. 2018 Jul 2;46(W1):W432-W437. doi: 10.1093/nar/gky420.
8
Protein structure prediction: making AWSEM AWSEM-ER by adding evolutionary restraints.
Proteins. 2017 Nov;85(11):2127-2142. doi: 10.1002/prot.25367. Epub 2017 Aug 27.
9
Exploring the aggregation free energy landscape of the amyloid-β protein (1-40).
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11835-11840. doi: 10.1073/pnas.1612362113. Epub 2016 Oct 3.
10
Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.
Nucleic Acids Res. 2016 Jul 8;44(W1):W356-60. doi: 10.1093/nar/gkw304. Epub 2016 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验