Lenz Gregor, Ieng Sio-Hoi, Benosman Ryad
INSERM UMRI S 968, Sorbonne Université, UPMC Univ. Paris, UMRS 968, Paris, France.
CNRS, UMR 7210, Institut de la Vision, Paris, France.
Front Neurosci. 2020 Jul 27;14:587. doi: 10.3389/fnins.2020.00587. eCollection 2020.
We present the first purely event-based method for face detection using the high temporal resolution properties of an event-based camera to detect the presence of a face in a scene using eye blinks. Eye blinks are a unique and stable natural dynamic temporal signature of human faces across population that can be fully captured by event-based sensors. We show that eye blinks have a unique temporal signature over time that can be easily detected by correlating the acquired local activity with a generic temporal model of eye blinks that has been generated from a wide population of users. In a second stage once a face has been located it becomes possible to apply a probabilistic framework to track its spatial location for each incoming event while using eye blinks to correct for drift and tracking errors. Results are shown for several indoor and outdoor experiments. We also release an annotated data set that can be used for future work on the topic.
我们提出了第一种基于事件的纯方法,用于人脸检测。该方法利用基于事件的相机的高时间分辨率特性,通过眨眼来检测场景中人脸的存在。眨眼是人类面部独特且稳定的自然动态时间特征,基于事件的传感器能够完全捕捉到这一特征。我们表明,随着时间推移,眨眼具有独特的时间特征,通过将采集到的局部活动与从大量用户生成的通用眨眼时间模型进行关联,能够轻松检测到这一特征。在第二阶段,一旦确定了人脸位置,就可以应用概率框架来跟踪每个传入事件中人脸的空间位置,同时利用眨眼来校正漂移和跟踪误差。文中展示了多个室内和室外实验的结果。我们还发布了一个带注释的数据集,可用于该主题的未来研究工作。