Department of Informatics, Universitas Islam Indonesia, Yogyakarta, Indonesia.
Institute for Computing and Information Sciences, Radboud University, Nijmegen, The Netherlands.
Br J Math Stat Psychol. 2021 May;74(2):313-339. doi: 10.1111/bmsp.12218. Epub 2020 Aug 28.
Rasch analysis is a popular statistical tool for developing and validating instruments that aim to measure human performance, attitudes and perceptions. Despite the availability of various software packages, constructing a good instrument based on Rasch analysis is still considered to be a complex, labour-intensive task, requiring human expertise and rather subjective judgements along the way. In this paper we propose a semi-automated method for Rasch analysis based on first principles that reduces the need for human input. To this end, we introduce a novel criterion, called in-plus-out-of-questionnaire log likelihood (IPOQ-LL). On artificial data sets, we confirm that optimization of IPOQ-LL leads to the desired behaviour in the case of multi-dimensional and inhomogeneous surveys. On three publicly available real-world data sets, our method leads to instruments that are, for all practical purposes, indistinguishable from those obtained by Rasch analysis experts through a manual procedure.
Rasch 分析是一种流行的统计工具,用于开发和验证旨在测量人类表现、态度和感知的工具。尽管有各种软件包可用,但基于 Rasch 分析构建一个好的工具仍然被认为是一项复杂且劳动密集型的任务,需要人类的专业知识和相当主观的判断。在本文中,我们提出了一种基于第一原理的半自动化 Rasch 分析方法,该方法减少了对人工输入的需求。为此,我们引入了一个新的标准,称为问卷内-外对数似然比(IPOQ-LL)。在人工数据集上,我们确认优化 IPOQ-LL 会导致多维和不均匀调查的预期行为。在三个公开可用的真实数据集上,我们的方法得到的工具在所有实际目的上都与通过手动程序由 Rasch 分析专家获得的工具无法区分。