Suppr超能文献

利用分子建模和整合酶抑制剂对接分析对不同 HIV-1 亚型进行结构比较。

Structural Comparison of Diverse HIV-1 Subtypes using Molecular Modelling and Docking Analyses of Integrase Inhibitors.

机构信息

South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Cape Town 8000, South Africa.

Division of Medical Virology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Avenue, P.O. Box 241, Cape Town 8000, South Africa.

出版信息

Viruses. 2020 Aug 26;12(9):936. doi: 10.3390/v12090936.

Abstract

The process of viral integration into the host genome is an essential step of the HIV-1 life cycle. The viral integrase (IN) enzyme catalyzes integration. IN is an ideal therapeutic enzyme targeted by several drugs; raltegravir (RAL), elvitegravir (EVG), dolutegravir (DTG), and bictegravir (BIC) having been approved by the USA Food and Drug Administration (FDA). Due to high HIV-1 diversity, it is not well understood how specific naturally occurring polymorphisms (NOPs) in IN may affect the structure/function and binding affinity of integrase strand transfer inhibitors (INSTIs). We applied computational methods of molecular modelling and docking to analyze the effect of NOPs on the full-length IN structure and INSTI binding. We identified 13 NOPs within the Cameroonian-derived CRF02_AG IN sequences and further identified 17 NOPs within HIV-1C South African sequences. The NOPs in the IN structures did not show any differences in INSTI binding affinity. However, linear regression analysis revealed a positive correlation between the Ki and EC50 values for DTG and BIC as strong inhibitors of HIV-1 IN subtypes. All INSTIs are clinically effective against diverse HIV-1 strains from INSTI treatment-naïve populations. This study supports the use of second-generation INSTIs such as DTG and BIC as part of first-line combination antiretroviral therapy (cART) regimens, due to a stronger genetic barrier to the emergence of drug resistance.

摘要

病毒整合到宿主基因组的过程是 HIV-1 生命周期的一个重要步骤。病毒整合酶 (IN) 酶催化整合。IN 是几种药物靶向的理想治疗酶;拉替拉韦(RAL)、艾维雷格(EVG)、多替拉韦(DTG)和比克替拉韦(BIC)已被美国食品和药物管理局 (FDA) 批准。由于 HIV-1 的高度多样性,尚不清楚 IN 中特定的天然存在的多态性 (NOP) 如何影响整合酶链转移抑制剂 (INSTIs) 的结构/功能和结合亲和力。我们应用分子建模和对接的计算方法来分析 NOP 对全长 IN 结构和 INSTI 结合的影响。我们在喀麦隆衍生的 CRF02_AG IN 序列中鉴定了 13 个 NOP,并在 HIV-1C 南非序列中进一步鉴定了 17 个 NOP。IN 结构中的 NOP 在 INSTI 结合亲和力上没有显示出任何差异。然而,线性回归分析显示,对于作为 HIV-1 IN 亚型强抑制剂的 DTG 和 BIC,Ki 和 EC50 值之间存在正相关关系。所有 INSTIs 对来自 INSTI 初治人群的不同 HIV-1 株均具有临床疗效。这项研究支持将第二代 INSTIs 如 DTG 和 BIC 用作一线联合抗逆转录病毒治疗 (cART) 方案的一部分,因为它们对耐药性的出现具有更强的遗传屏障。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f6/7552036/b70be9ed1b79/viruses-12-00936-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验