Park Changhoon, Kim Jagyeong, Hahn Jae W
Nano Photonics Laboratory, School of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea.
ACS Appl Mater Interfaces. 2020 Sep 23;12(38):43090-43097. doi: 10.1021/acsami.0c12283. Epub 2020 Sep 11.
Selective emitters comprising plasmonic resonators have been exploited for cooling devices or infrared stealth technology. While selective emitters have been designed using odd-order resonances, even-order resonances also emit anisotropic thermal radiation signals. Thermal radiation by even-order resonances in selective emitters can be experimentally detected by thermal imaging cameras, and such thermal emissions often degrade the observability of infrared detectors, rendering them inapplicable to infrared stealth technology. Here, a selective emitter with extremely low thermal radiation signature in a dual-band range, a detection range by an infrared detector, is proposed with engineering anisotropic thermal radiation by even-order resonances. To minimize infrared signature in a dual-band range, the characterization of even-order resonances of gap plasmon metasurfaces is achieved based on vectorial diffraction within a relative error of 10%. Thermal radiation by even-order resonance has been shown to be highly directional and can be experimentally measured using mid-wave infrared images. Based on model prediction, the proposed selective emitter reduces mid-wave infrared signatures and long-wave infrared signatures by factors of 37.95 and 38.06, respectively, compared with those of blackbody surfaces. In addition, numerically confirmed thermal signature reduction and captured mid-wave infrared images indicate excellent thermal camouflage performance of the selective emitter with background medium. Thus, the characterization of even-order resonances provides a basis for the design of metasurfaces that can be employed for multispectral applications, especially infrared stealth technology.
包含等离子体谐振器的选择性发射体已被用于冷却设备或红外隐身技术。虽然选择性发射体是利用奇数阶谐振设计的,但偶数阶谐振也会发射各向异性的热辐射信号。选择性发射体中偶数阶谐振产生的热辐射可以通过热成像相机进行实验检测,而这种热辐射常常会降低红外探测器的可观测性,使其不适用于红外隐身技术。在此,通过对偶数阶谐振产生的各向异性热辐射进行工程设计,提出了一种在红外探测器的双波段探测范围内具有极低热辐射特征的选择性发射体。为了在双波段范围内最小化红外特征,基于矢量衍射实现了间隙表面等离激元超表面偶数阶谐振的表征,相对误差在10%以内。偶数阶谐振产生的热辐射已被证明具有高度方向性,并且可以通过中波红外图像进行实验测量。基于模型预测,与黑体表面相比,所提出的选择性发射体分别将中波红外特征和长波红外特征降低了37.95倍和38.06倍。此外,数值确认的热特征降低和捕获的中波红外图像表明,该选择性发射体与背景介质相比具有出色的热伪装性能。因此,偶数阶谐振的表征为可用于多光谱应用,特别是红外隐身技术的超表面设计提供了基础。