Suppr超能文献

通过CRISPR/Cas基因组编辑技术培育植物的耐旱性。

Engineering drought tolerance in plants through CRISPR/Cas genome editing.

作者信息

Joshi Raj Kumar, Bharat Suhas Sutar, Mishra Rukmini

机构信息

Department of Biotechnology, Rama Devi Women's University, Vidya Vihar, Bhubaneswar, Odisha India.

National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China.

出版信息

3 Biotech. 2020 Sep;10(9):400. doi: 10.1007/s13205-020-02390-3. Epub 2020 Aug 19.

Abstract

Drought stress is primarily responsible for heavy yield losses and productivity in major crops and possesses the greatest threat to the global food security. While conventional and molecular breeding approaches along with genetic engineering techniques have been instrumental in developing drought-tolerant crop varieties, these methods are cumbersome, time consuming and the genetically modified varieties are not widely accepted due to regulatory concerns. Plant breeders are now increasingly centring towards the recently available genome-editing tools for improvement of agriculturally important traits. The advent of multiple sequence-specific nucleases has facilitated precise gene modification towards development of novel climate ready crop variants. Amongst the available genome-editing platforms, the clustered regularly interspaced short palindromic repeat-Cas (CRISPR/Cas) system has emerged as a revolutionary tool for its simplicity, adaptability, flexibility and wide applicability. In this review, we focus on understanding the molecular mechanism of drought response in plants and the application of CRISPR/Cas genome-editing system towards improved tolerance to drought stress.

摘要

干旱胁迫是造成主要农作物产量大幅损失和生产力下降的主要原因,对全球粮食安全构成最大威胁。虽然传统育种和分子育种方法以及基因工程技术在培育耐旱作物品种方面发挥了重要作用,但这些方法繁琐、耗时,而且由于监管问题,转基因品种并未被广泛接受。植物育种者现在越来越多地将注意力集中在最近可用的基因组编辑工具上,以改善农业重要性状。多种序列特异性核酸酶的出现促进了精确的基因修饰,以开发新型适应气候变化的作物变体。在现有的基因组编辑平台中,成簇规律间隔短回文重复序列-Cas(CRISPR/Cas)系统因其简单性、适应性、灵活性和广泛适用性而成为一种革命性工具。在这篇综述中,我们着重于了解植物干旱响应的分子机制以及CRISPR/Cas基因组编辑系统在提高耐旱胁迫耐受性方面的应用。

相似文献

1
Engineering drought tolerance in plants through CRISPR/Cas genome editing.
3 Biotech. 2020 Sep;10(9):400. doi: 10.1007/s13205-020-02390-3. Epub 2020 Aug 19.
2
Mechanistic insights of CRISPR/Cas-mediated genome editing towards enhancing abiotic stress tolerance in plants.
Physiol Plant. 2021 Jun;172(2):1255-1268. doi: 10.1111/ppl.13359. Epub 2021 Feb 21.
3
Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
J Exp Bot. 2020 Jan 7;71(2):470-479. doi: 10.1093/jxb/erz476.
4
Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants.
Front Plant Sci. 2023 Apr 18;14:1157678. doi: 10.3389/fpls.2023.1157678. eCollection 2023.
5
CRISPR/Cas9 Technique for Temperature, Drought, and Salinity Stress Responses.
Curr Issues Mol Biol. 2022 Jun 8;44(6):2664-2682. doi: 10.3390/cimb44060182.
7
State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants.
Plant Cell Rep. 2022 Mar;41(3):815-831. doi: 10.1007/s00299-021-02681-w. Epub 2021 Mar 19.
8
Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
Int J Mol Sci. 2021 May 25;22(11):5585. doi: 10.3390/ijms22115585.
9
Genome editing for crop improvement: Challenges and opportunities.
GM Crops Food. 2015;6(4):183-205. doi: 10.1080/21645698.2015.1129937.
10
CRISPR/Cas: A powerful tool for gene function study and crop improvement.
J Adv Res. 2020 Oct 21;29:207-221. doi: 10.1016/j.jare.2020.10.003. eCollection 2021 Mar.

引用本文的文献

1
Beyond the lab: future-proofing agriculture for climate resilience and stress management.
Front Plant Sci. 2025 Jun 13;16:1565850. doi: 10.3389/fpls.2025.1565850. eCollection 2025.
2
In Silico Analysis of miRNA-mRNA Binding Sites in as a Model for Drought-Tolerant Plants.
Plants (Basel). 2025 Jun 12;14(12):1800. doi: 10.3390/plants14121800.
3
Directed mutagenesis in fruit crops.
3 Biotech. 2025 Apr;15(4):104. doi: 10.1007/s13205-025-04268-8. Epub 2025 Mar 31.
4
Identification of U6 Promoter and Establishment of Gene-Editing System in (Lamb.) Carr.
Plants (Basel). 2024 Dec 26;14(1):45. doi: 10.3390/plants14010045.
5
Drought Stress Amelioration Attributes of Plant-Associated Microbiome on Agricultural Plants.
Bioinform Biol Insights. 2024 Mar 8;18:11779322241233442. doi: 10.1177/11779322241233442. eCollection 2024.
6
Molecular insights and omics-based understanding of plant-microbe interactions under drought stress.
World J Microbiol Biotechnol. 2023 Dec 18;40(2):42. doi: 10.1007/s11274-023-03837-4.
7
CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding.
Int J Mol Sci. 2023 Nov 23;24(23):16656. doi: 10.3390/ijms242316656.
9
Genome Editing and Improvement of Abiotic Stress Tolerance in Crop Plants.
Life (Basel). 2023 Jun 27;13(7):1456. doi: 10.3390/life13071456.
10
New precision-breeding law unlocks gene editing in England.
Nat Biotechnol. 2023 Jun;41(6):752-753. doi: 10.1038/s41587-023-01795-8.

本文引用的文献

1
CRISPR-based tools for plant genome engineering.
Emerg Top Life Sci. 2017 Nov 10;1(2):135-149. doi: 10.1042/ETLS20170011.
2
Potential impact of genome editing in world agriculture.
Emerg Top Life Sci. 2017 Nov 10;1(2):117-133. doi: 10.1042/ETLS20170010.
3
Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the gene.
Mol Breed. 2019;39. doi: 10.1007/s11032-019-0954-y. Epub 2019 Mar 9.
4
Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and by Monitoring DsRED Fluorescence in Dry Seeds.
Front Plant Sci. 2019 Sep 18;10:1150. doi: 10.3389/fpls.2019.01150. eCollection 2019.
5
Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice.
Plant Direct. 2019 May 29;3(5):e00145. doi: 10.1002/pld3.145. eCollection 2019 May.
6
Base editing in crops: current advances, limitations and future implications.
Plant Biotechnol J. 2020 Jan;18(1):20-31. doi: 10.1111/pbi.13225. Epub 2019 Aug 15.
8
An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
Nat Plants. 2019 Apr;5(4):363-368. doi: 10.1038/s41477-019-0386-z. Epub 2019 Mar 25.
10
One-step genome editing of elite crop germplasm during haploid induction.
Nat Biotechnol. 2019 Mar;37(3):287-292. doi: 10.1038/s41587-019-0038-x. Epub 2019 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验