Matern Jonas, Kartha Kalathil K, Sánchez Luis, Fernández Gustavo
Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 36 , 48149 Münster , Germany . Email:
Departamento de Química Orgánica , Facultad de Ciencias Químicas, Universidad Complutense de Madrid , Ciudad Universitaria s/n , 28040 Madrid , Spain.
Chem Sci. 2020 Jun 2;11(26):6780-6788. doi: 10.1039/d0sc02115f. eCollection 2020 Jul 14.
In recent years, the development of sophisticated analytical tools, kinetic models and sample preparation methods has significantly advanced the field of supramolecular polymerization, where the competition of kinetic thermodynamic processes has become commonplace for a wide range of building blocks. Typically, the kinetic pathways are identified in thermally controlled assembly experiments before they ultimately evolve to the thermodynamic minimum. However, there might be cases where the identification and thus the assessment of the influence of kinetic aggregates is not trivial, making the analysis of the self-assembly processes a hard task. Herein, we demonstrate that "hidden" kinetic pathways can have drastic consequences on supramolecular polymerization processes, to the point that they can even overrule thermodynamic implications. To this end, we analyzed in detail the supramolecular polymerization of a chiral Pd complex that forms two competing aggregates ( and ) of which kinetic is formed through a "hidden" pathway, this pathway is not accessible by common thermal polymerization protocols. The hidden pathway exhibits two consecutive steps: first, is formed in a cooperative process, which subsequently evolves to clustered superstructures driven by rapid kinetics. At standard conditions, displays an extraordinary kinetic stability (>6 months), which could be correlated to its cooperative mechanism suppressing nucleation of thermodynamic . Furthermore, the fast kinetics of cluster formation sequester monomers from the equilibria in solution and prevents the system from relaxing into the thermodynamic minimum, thus highlighting the key implications of hidden pathways in governing supramolecular polymerization processes.
近年来,先进分析工具、动力学模型和样品制备方法的发展显著推动了超分子聚合领域的进步,在该领域中,动力学和热力学过程的竞争对于众多构建单元而言已十分常见。通常,在热控组装实验中确定动力学途径,然后它们最终演变为热力学最小值。然而,可能存在某些情况,即识别并因此评估动力学聚集体的影响并非易事,这使得自组装过程的分析成为一项艰巨任务。在此,我们证明“隐藏”的动力学途径可对超分子聚合过程产生重大影响,甚至能够推翻热力学影响。为此,我们详细分析了一种手性钯配合物的超分子聚合,该配合物形成两种相互竞争的聚集体(和),其中动力学聚集体通过“隐藏”途径形成,这种途径无法通过常规热聚合方案实现。隐藏途径呈现两个连续步骤:首先,在协同过程中形成,随后在快速动力学驱动下演变为聚集的超结构。在标准条件下,表现出非凡的动力学稳定性(>6个月),这可能与其抑制热力学聚集体成核的协同机制相关。此外,聚集体形成的快速动力学从溶液平衡中隔离单体,并阻止系统弛豫到热力学最小值,从而突出了隐藏途径在控制超分子聚合过程中的关键影响。