Suppr超能文献

CRISPR 干扰引导的葡萄糖途径调控以提高大肠杆菌中乌头酸的产量。

CRISPR interference-guided modulation of glucose pathways to boost aconitic acid production in Escherichia coli.

机构信息

School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China.

College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

Microb Cell Fact. 2020 Sep 3;19(1):174. doi: 10.1186/s12934-020-01435-9.

Abstract

BACKGROUND

One major mission of microbial breeding is high-level production of desired metabolites. Overproduction of intermediate metabolites in core pathways is challenging as it may impair cell growth and viability.

RESULTS

Here we report that aconitic acid, an intermediate metabolite in tricarboxylic acid (TCA) cycle, can be overproduced by an engineered CRISPR interference (CRISPRi) system in Escherichia coli. This CRISPRi system was designed to simultaneously target pyruvate kinase (PK) and isocitrate dehydrogenase (IDH), two enzymes in glycolytic pathway and TCA cycle, respectively. Reverse transcription and quantitative PCR and enzyme activity assays showed that this engineered CRISPRi system significantly repressed the genes encoding IDH and PK, resulting in simultaneous reduction in the activities of IDH and PK. In shake-flask and fed-batch cultivation, this CRISPRi strain produced 60-fold (362.80 ± 22.05 mg/L) and 15-fold (623.80 ± 20.05 mg/L) of aconitic acid relative to the control strain, respectively. In addition, this two-target CRISPRi strain maintained low levels of acetate and lactate, two problematic byproducts.

CONCLUSIONS

This work demonstrates that CRISPRi system can improve aconitic acid production by coordinating glycolysis and TCA cycle. This study provides insights for high-level production of the intermediate metabolites in central pathways.

摘要

背景

微生物育种的主要任务之一是高水平生产所需的代谢物。过度生产核心途径中的中间代谢物具有挑战性,因为这可能会损害细胞生长和活力。

结果

在这里,我们报告说,三羧酸 (TCA) 循环中的中间代谢物富马酸可以通过大肠杆菌中的工程化 CRISPR 干扰 (CRISPRi) 系统过量生产。该 CRISPRi 系统旨在同时针对糖酵解途径和 TCA 循环中的两种酶,即丙酮酸激酶 (PK) 和异柠檬酸脱氢酶 (IDH)。逆转录和定量 PCR 以及酶活性测定表明,该工程化的 CRISPRi 系统显着抑制了编码 IDH 和 PK 的基因,导致 IDH 和 PK 的活性同时降低。在摇瓶和分批补料培养中,该 CRISPRi 菌株分别产生了 60 倍(362.80±22.05mg/L)和 15 倍(623.80±20.05mg/L)的富马酸,与对照菌株相比。此外,该双靶标 CRISPRi 菌株保持低水平的乙酸盐和乳酸盐,这两种都是有问题的副产物。

结论

这项工作表明,CRISPRi 系统可以通过协调糖酵解和 TCA 循环来提高富马酸的产量。这项研究为中间代谢物在中心途径中的高水平生产提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83e6/7470443/ff589ffcd889/12934_2020_1435_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验