Wu Fan, Krishna Gopal, Surapaneni Sekhar
Nonclinical Research and Development, Bristol Myers Squibb, Summit, NJ, USA.
Clinical Pharmacology, Bristol Myers Squibb, Summit, NJ, USA.
Cancer Chemother Pharmacol. 2020 Oct;86(4):461-473. doi: 10.1007/s00280-020-04131-y. Epub 2020 Sep 4.
Fedratinib (INREBIC), a Janus kinase 2 inhibitor, is approved in the United States to treat patients with myelofibrosis. Fedratinib is not only a substrate of cytochrome P450 (CYP) enzymes, but also exhibits complex auto-inhibition, time-dependent inhibition, or mixed inhibition/induction of CYP enzymes including CYP3A. Therefore, a mechanistic modeling approach was used to characterize pharmacokinetic (PK) properties and assess drug-drug interaction (DDI) potentials for fedratinib under clinical scenarios.
The physiologically based pharmacokinetic (PBPK) model of fedratinib was constructed in Simcyp (V17R1) by integrating available in vitro and in vivo information and was further parameterized and validated by using clinical PK data.
The validated PBPK model was applied to predict DDIs between fedratinib and CYP modulators or substrates. The model simulations indicated that the fedratinib-as-victim DDI extent in terms of geometric mean area under curve (AUC) at steady state is about twofold or 1.2-fold when strong or moderate CYP3A4 inhibitors, respectively, are co-administered with repeated doses of fedratinib. In addition, the PBPK model successfully captured the perpetrator DDI effect of fedratinib on a sensitive CY3A4 substrate midazolam and predicted minor effects of fedratinib on CYP2C8/9 substrates.
The PBPK-DDI model of fedratinib facilitated drug development by identifying DDI potential, optimizing clinical study designs, supporting waivers for clinical studies, and informing drug label claims. Fedratinib dose should be reduced to 200 mg QD when a strong CYP3A4 inhibitor is co-administered and then re-escalated to 400 mg in a stepwise manner as tolerated after the strong CYP3A4 inhibitor is discontinued.
非格司亭(INREBIC)是一种酪氨酸激酶2抑制剂,在美国被批准用于治疗骨髓纤维化患者。非格司亭不仅是细胞色素P450(CYP)酶的底物,还表现出对包括CYP3A在内的CYP酶的复杂自抑制、时间依赖性抑制或混合抑制/诱导作用。因此,采用机制建模方法来表征非格司亭的药代动力学(PK)特性,并评估其在临床情况下的药物相互作用(DDI)潜力。
通过整合可用的体外和体内信息,在Simcyp(V17R1)中构建了非格司亭的基于生理的药代动力学(PBPK)模型,并使用临床PK数据进行进一步参数化和验证。
经验证的PBPK模型用于预测非格司亭与CYP调节剂或底物之间的DDI。模型模拟表明,当分别与重复剂量的非格司亭共同给药时,稳态下曲线下面积(AUC)的几何均值方面,强或中度CYP3A4抑制剂导致的非格司亭作为受影响药物的DDI程度分别约为两倍或1.2倍。此外,PBPK模型成功捕捉到非格司亭对敏感的CY3A4底物咪达唑仑的肇事者DDI效应,并预测了非格司亭对CYP2C8/9底物的轻微影响。
非格司亭的PBPK-DDI模型通过识别DDI潜力、优化临床研究设计、支持临床研究豁免以及为药品标签声明提供信息,促进了药物开发。当与强CYP3A4抑制剂共同给药时,非格司亭剂量应减至200mg每日一次,然后在停用强CYP3A4抑制剂后,根据耐受情况逐步将剂量重新增加至400mg。