Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy.
Université de Paris, CiTCoM, CNRS, F-75006 Paris, France.
J Phys Chem Lett. 2020 Oct 1;11(19):7972-7980. doi: 10.1021/acs.jpclett.0c02138. Epub 2020 Sep 10.
The biological light-harvesting process offers an unlimited source of inspiration. The high level of control, adaptation capability, and efficiency challenge humankind to create artificial biomimicking nanoarchitectures with the same performances to respond to our energy needs. Here, in the extensive search for design principles at the base of efficient artificial light harvesters, an approach based on self-assembly of pigment-peptide conjugates is proposed. The solvent-driven and controlled aggregation of the peptide moieties promotes the formation of a dense network of interacting pigments, giving rise to an excitonic network characterized by intense and spectrally wide absorption bands. The ultrafast dynamics of the nanosystems studied through two-dimensional electronic spectroscopy reveals that the excitation energy is funneled in an ultrafast time range (hundreds of femtoseconds) to a manifold of long-living dark states, thus suggesting the considerable potentiality of the systems as efficient harvesters.
生物光捕获过程提供了无限的灵感来源。其高度的可控性、适应性和效率促使人类创造出具有相同性能的人工仿生纳米结构,以满足我们的能源需求。在广泛寻找高效人工光收集器的基础设计原则的过程中,本文提出了一种基于色素-肽缀合物自组装的方法。在溶剂的驱动下,肽部分可控聚集,促进了相互作用色素的密集网络的形成,从而产生具有强烈和宽光谱吸收带的激子网络。通过二维电子光谱研究纳米系统的超快动力学表明,激发能量在超快时间范围内(数百飞秒)被传递到一组长寿命的暗态,从而表明该系统作为高效收集器具有相当大的潜力。