Suppr超能文献

用于蛋白质相对定量的新型无标记方法在亨廷顿病动物模型研究中的应用。

New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease.

机构信息

Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy.

CEINGE Advanced Biotechnologies, Naples, Italy.

出版信息

PLoS One. 2020 Sep 4;15(9):e0238037. doi: 10.1371/journal.pone.0238037. eCollection 2020.

Abstract

Spectral Counts approaches (SpCs) are largely employed for the comparison of protein expression profiles in label-free (LF) differential proteomics applications. Similarly, to other comparative methods, also SpCs based approaches require a normalization procedure before Fold Changes (FC) calculation. Here, we propose new Complexity Based Normalization (CBN) methods that introduced a variable adjustment factor (f), related to the complexity of the sample, both in terms of total number of identified proteins (CBN(P)) and as total number of spectral counts (CBN(S)). Both these new methods were compared with the Normalized Spectral Abundance Factor (NSAF) and the Spectral Counts log Ratio (Rsc), by using standard protein mixtures. Finally, to test the robustness and the effectiveness of the CBNs methods, they were employed for the comparative analysis of cortical protein extract from zQ175 mouse brains, model of Huntington Disease (HD), and control animals (raw data available via ProteomeXchange with identifier PXD017471). LF data were also validated by western blot and MRM based experiments. On standard mixtures, both CBN methods showed an excellent behavior in terms of reproducibility and coefficients of variation (CVs) in comparison to the other SpCs approaches. Overall, the CBN(P) method was demonstrated to be the most reliable and sensitive in detecting small differences in protein amounts when applied to biological samples.

摘要

光谱计数法(Spectral Counts,SpCs)广泛应用于无标记(label-free,LF)差异蛋白质组学应用中的蛋白质表达谱比较。与其他比较方法类似,SpCs 方法也需要在计算 Fold Changes(FC)之前进行归一化处理。在这里,我们提出了新的基于复杂度的归一化(Complexity Based Normalization,CBN)方法,该方法引入了一个可变调整因子(f),与样品的复杂度有关,包括鉴定蛋白的总数(CBN(P))和总光谱计数(CBN(S))。这两种新方法均与归一化光谱丰度因子(Normalized Spectral Abundance Factor,NSAF)和光谱计数对数比(Spectral Counts log Ratio,Rsc)进行了比较,使用了标准蛋白质混合物。最后,为了测试 CBN 方法的稳健性和有效性,我们将其用于比较 zQ175 小鼠大脑皮质蛋白提取物的分析,zQ175 是亨廷顿病(Huntington Disease,HD)的模型,同时比较了对照动物(raw data 可通过 ProteomeXchange 获取,标识符为 PXD017471)。LF 数据还通过 Western blot 和基于 MRM 的实验进行了验证。在标准混合物中,与其他 SpCs 方法相比,两种 CBN 方法在重复性和变异系数(coefficients of variation,CVs)方面均表现出优异的性能。总体而言,当应用于生物样品时,CBN(P)方法在检测蛋白质含量的微小差异方面被证明是最可靠和最敏感的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b91/7473538/0feaf3e39f6b/pone.0238037.g001.jpg

相似文献

1
New label-free methods for protein relative quantification applied to the investigation of an animal model of Huntington Disease.
PLoS One. 2020 Sep 4;15(9):e0238037. doi: 10.1371/journal.pone.0238037. eCollection 2020.
2
Evaluation of normalization methods on GeLC-MS/MS label-free spectral counting data to correct for variation during proteomic workflows.
J Am Soc Mass Spectrom. 2011 Dec;22(12):2199-208. doi: 10.1007/s13361-011-0237-2. Epub 2011 Sep 24.
5
Protein expression in the striatum and cortex regions of the brain for a mouse model of Huntington's disease.
J Proteome Res. 2007 Aug;6(8):3134-42. doi: 10.1021/pr070092s. Epub 2007 Jul 11.
6
SWATH enables precise label-free quantification on proteome scale.
Proteomics. 2015 Apr;15(7):1215-23. doi: 10.1002/pmic.201400270.
7
Experimental Null Method to Guide the Development of Technical Procedures and to Control False-Positive Discovery in Quantitative Proteomics.
J Proteome Res. 2015 Oct 2;14(10):4147-57. doi: 10.1021/acs.jproteome.5b00200. Epub 2015 Sep 1.
9
On the beta-binomial model for analysis of spectral count data in label-free tandem mass spectrometry-based proteomics.
Bioinformatics. 2010 Feb 1;26(3):363-9. doi: 10.1093/bioinformatics/btp677. Epub 2009 Dec 9.
10
Comparative evaluation of label-free quantification methods for shotgun proteomics.
Rapid Commun Mass Spectrom. 2017 Apr 15;31(7):606-612. doi: 10.1002/rcm.7829.

引用本文的文献

3
Mapping the global interactome of the ARF family reveals spatial organization in cellular signaling pathways.
J Cell Sci. 2024 May 1;137(9). doi: 10.1242/jcs.262140. Epub 2024 May 14.
4
Proteomic signature profiling in the cortex of dairy cattle unravels the physiology of brain aging.
Front Aging Neurosci. 2023 Dec 7;15:1277546. doi: 10.3389/fnagi.2023.1277546. eCollection 2023.
5
Preliminary evaluation of the proteomic profiling in the hippocampus of aged grazing cattle.
Front Aging Neurosci. 2023 Oct 27;15:1274073. doi: 10.3389/fnagi.2023.1274073. eCollection 2023.
6
A new versatile peroxidase with extremophilic traits over-produced in MicroTom cell cultures.
Sci Rep. 2023 Sep 15;13(1):15338. doi: 10.1038/s41598-023-42597-x.
8
Salivary proteins offer insights into keratinocyte death during aphthous stomatitis. A case-crossover study.
BMC Oral Health. 2023 May 11;23(1):279. doi: 10.1186/s12903-023-02955-7.
9

本文引用的文献

1
Integrative proteomic and glycoproteomic profiling of Mycobacterium tuberculosis culture filtrate.
PLoS One. 2020 Mar 3;15(3):e0221837. doi: 10.1371/journal.pone.0221837. eCollection 2020.
2
Characterizing Patients with Recurrent Urinary Tract Infections in Vesicoureteral Reflux: A Pilot Study of the Urinary Proteome.
Mol Cell Proteomics. 2020 Mar;19(3):456-466. doi: 10.1074/mcp.RA119.001873. Epub 2020 Jan 2.
6
The use of proteomic technologies to study molecular mechanisms of multidrug resistance in cancer.
Eur J Med Chem. 2019 Jan 15;162:423-434. doi: 10.1016/j.ejmech.2018.10.001. Epub 2018 Oct 11.
7
Applications of MALDI-TOF mass spectrometry in clinical proteomics.
Expert Rev Proteomics. 2018 Aug;15(8):683-696. doi: 10.1080/14789450.2018.1505510. Epub 2018 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验