Suppr超能文献

在哺乳动物细胞中工程化类胡萝卜素生产,用于营养增强的细胞培养食品。

Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods.

机构信息

Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.

Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA; W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA.

出版信息

Metab Eng. 2020 Nov;62:126-137. doi: 10.1016/j.ymben.2020.07.011. Epub 2020 Sep 2.

Abstract

Metabolic engineering of mammalian cells has to-date focused primarily on biopharmaceutical protein production or the manipulation of native metabolic processes towards therapeutic aims. However, significant potential exists for expanding these techniques to diverse applications by looking across the taxonomic tree to bioactive metabolites not synthesized in animals. Namely, cross-taxa metabolic engineering of mammalian cells could offer value in applications ranging fromfood and nutrition to regenerative medicine and gene therapy. Towards the former, recent advances in meat production through cell culture suggest the potential to produce meat with fine cellular control, where tuning composition through cross-taxa metabolic engineering could enhance nutrition and food-functionality. Here we demonstrate this possibility by engineering primary bovine and immortalized murine muscle cells with prokaryotic enzymes to endogenously produce the antioxidant carotenoids phytoene, lycopene and β-carotene. These phytonutrients offer general nutritive value and protective effects against diseases associated with red and processed meat consumption, and so offer a promising proof-of-concept for nutritional engineering in cultured meat. We demonstrate the phenotypic integrity of engineered cells, the ability to tune carotenoid yields, and the antioxidant functionality of these compounds in vitro towards both nutrition and food-quality objectives. Our results demonstrate the potential for tailoring the nutritional profile of cultured meats. They further lay a foundation for heterologous metabolic engineering of mammalian cells for applications outside of the clinical realm.

摘要

哺乳动物细胞的代谢工程迄今为止主要集中在生物制药蛋白生产或针对治疗目的对天然代谢过程的操作上。然而,通过跨越分类群来看待动物体内未合成的生物活性代谢物,将这些技术扩展到多样化的应用中具有巨大的潜力。也就是说,哺乳动物细胞的跨分类群代谢工程可以在从食品和营养到再生医学和基因治疗等广泛的应用中具有价值。就前者而言,通过细胞培养生产肉类的最新进展表明,有可能通过精细的细胞控制来生产肉类,通过跨分类群代谢工程来调整组成可以增强营养和食品功能。在这里,我们通过用原核酶对原代牛和永生化鼠肌肉细胞进行工程改造,使它们内源性地产生抗氧化剂类胡萝卜素番茄红素、番茄红素和β-胡萝卜素,证明了这种可能性。这些植物营养素具有一般的营养价值和对与红肉类和加工肉类消费相关的疾病的保护作用,因此为培养肉的营养工程提供了一个有前景的概念验证。我们证明了工程化细胞的表型完整性,能够调整类胡萝卜素的产量,以及这些化合物在体外对营养和食品质量目标的抗氧化功能。我们的结果表明了定制培养肉类营养状况的潜力。它们进一步为哺乳动物细胞的异源代谢工程在临床领域之外的应用奠定了基础。

相似文献

1
Engineering carotenoid production in mammalian cells for nutritionally enhanced cell-cultured foods.
Metab Eng. 2020 Nov;62:126-137. doi: 10.1016/j.ymben.2020.07.011. Epub 2020 Sep 2.
3
Metabolic Engineering of Chlamydomonas reinhardtii for Enhanced β-Carotene and Lutein Production.
Appl Biochem Biotechnol. 2020 Apr;190(4):1457-1469. doi: 10.1007/s12010-019-03194-9. Epub 2019 Nov 28.
4
Red yeasts and their carotenogenic enzymes for microbial carotenoid production.
FEMS Yeast Res. 2023 Jan 4;23. doi: 10.1093/femsyr/foac063.
5
Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin.
Biotechnol Adv. 2022 Dec;61:108033. doi: 10.1016/j.biotechadv.2022.108033. Epub 2022 Sep 9.
7
Metabolic Engineering of for the Production of Phytoene.
J Microbiol Biotechnol. 2018 Oct 28;28(10):1691-1699. doi: 10.4014/jmb.1808.08019.
10
Pathway Engineering Using Escherichia coli to Produce Commercialized Carotenoids.
Adv Exp Med Biol. 2021;1261:191-199. doi: 10.1007/978-981-15-7360-6_16.

引用本文的文献

1
Low concentration press cake protein isolates preserve biological activity during lyophilization and spray drying.
Front Nutr. 2025 Jun 18;12:1602010. doi: 10.3389/fnut.2025.1602010. eCollection 2025.
2
Low-cost food-grade alternatives for serum albumins in FBS-free cell culture media.
Sci Rep. 2025 May 1;15(1):15296. doi: 10.1038/s41598-025-99603-7.
3
CRISPR-edited, cell-based future-proof meat and seafood to enhance global food security and nutrition.
Cytotechnology. 2024 Dec;76(6):619-652. doi: 10.1007/s10616-024-00645-y. Epub 2024 Jul 26.
4
Artificial intelligence and machine learning applications for cultured meat.
Front Artif Intell. 2024 Sep 24;7:1424012. doi: 10.3389/frai.2024.1424012. eCollection 2024.
5
Unlocking the potential of cultivated meat through cell line engineering.
iScience. 2024 Sep 6;27(10):110877. doi: 10.1016/j.isci.2024.110877. eCollection 2024 Oct 18.
6
Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review.
Food Sci Anim Resour. 2024 May;44(3):499-514. doi: 10.5851/kosfa.2024.e20. Epub 2024 May 1.
7
Cultured meat in the European Union: Legislative context and food safety issues.
Curr Res Food Sci. 2024 Mar 16;8:100722. doi: 10.1016/j.crfs.2024.100722. eCollection 2024.
8
An immortal porcine preadipocyte cell strain for efficient production of cell-cultured fat.
Commun Biol. 2023 Nov 25;6(1):1202. doi: 10.1038/s42003-023-05583-7.
9
Stem cell-based strategies and challenges for production of cultivated meat.
Nat Food. 2023 Oct;4(10):841-853. doi: 10.1038/s43016-023-00857-z. Epub 2023 Oct 16.
10
Bioreactors, scaffolds and microcarriers and meat production-current obstacles and potential solutions.
Front Nutr. 2023 Sep 6;10:1225233. doi: 10.3389/fnut.2023.1225233. eCollection 2023.

本文引用的文献

1
In Vitro Insect Muscle for Tissue Engineering Applications.
ACS Biomater Sci Eng. 2019 Feb 11;5(2):1071-1082. doi: 10.1021/acsbiomaterials.8b01261. Epub 2019 Jan 15.
3
Testing potential psychological predictors of attitudes towards cultured meat.
Appetite. 2019 May 1;136:137-145. doi: 10.1016/j.appet.2019.01.027. Epub 2019 Feb 4.
4
Maintaining bovine satellite cells stemness through p38 pathway.
Sci Rep. 2018 Jul 17;8(1):10808. doi: 10.1038/s41598-018-28746-7.
5
Natural antioxidants against lipid-protein oxidative deterioration in meat and meat products: A review.
Food Res Int. 2014 Oct;64:171-181. doi: 10.1016/j.foodres.2014.06.022. Epub 2014 Jun 21.
6
Consumer acceptance of cultured meat: A systematic review.
Meat Sci. 2018 Sep;143:8-17. doi: 10.1016/j.meatsci.2018.04.008. Epub 2018 Apr 12.
7
The challenges facing synthetic biology in eukaryotes.
Nat Rev Mol Cell Biol. 2018 Aug;19(8):481-482. doi: 10.1038/s41580-018-0013-2.
8
Potential of golden potatoes to improve vitamin A and vitamin E status in developing countries.
PLoS One. 2017 Nov 8;12(11):e0187102. doi: 10.1371/journal.pone.0187102. eCollection 2017.
9
Cell Factory Engineering.
Cell Syst. 2017 Mar 22;4(3):262-275. doi: 10.1016/j.cels.2017.02.010.
10
Redox Control of Skeletal Muscle Regeneration.
Antioxid Redox Signal. 2017 Aug 10;27(5):276-310. doi: 10.1089/ars.2016.6782. Epub 2017 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验