Institut de Chimie Organique et Analytique, Université d'Orléans, 45100 Orléans, France.
Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
Biomolecules. 2020 Sep 7;10(9):1289. doi: 10.3390/biom10091289.
Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.
核苷三磷酸 (NTP) 进入 RNA 聚合酶 (RNAP) 隔离活性位点的途径的描绘对于阐明完整的核苷酸添加循环具有重要意义。两种替代方案构成了一个尚未解决的二分法,即通过次要通道 (CH2) 直接提供 NTP,或在催化之前选择主通道 (CH1) 中的下游位点,已被提出。在这项研究中,应用自由扩散 NTP 关于 RNAPII 的加速分子动力学模拟来改进 CH2 模型,并揭示 CH1 模型上的原子细节,该模型以前缺乏有说服力的结构框架来说明其作用机制。首次模拟了 NTP 向下游 DNA 的扩散和结合,以及预选 NTP 向活性位点的转移。全原子模拟进一步支持 CH1 加载是转录因子 IIF (TFIIF) 依赖性的,并影响催化异构化。总之,替代核苷酸加载系统可能允许表达不同的转录景观。