Junghans Christoph, Praprotnik Matej, Kremer Kurt
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany.
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany and On leave from the National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.
Soft Matter. 2007 Dec 11;4(1):156-161. doi: 10.1039/b713568h.
We introduce a variation of the dissipative particle dynamics (DPD) thermostat that allows for controlling transport properties of molecular fluids. The standard DPD thermostat acts only on a relative velocity along the interatomic axis. Our extension includes the damping of the perpendicular components of the relative velocity, whilst keeping the advantages of conserving Galilei invariance and within our error bar also hydrodynamics. This leads to a second friction parameter for tuning the transport properties of the system. Numerical simulations of a simple Lennard-Jones fluid and liquid water demonstrate a very sensitive behaviour of the transport properties, e.g., viscosity, on the strength of the new friction parameter. We envisage that the new thermostat will be very useful for the coarse-grained and adaptive resolution simulations of soft matter, where the diffusion constants and viscosities of the coarse-grained models are typically too high/low, respectively, compared to all-atom simulations.
我们引入了一种耗散粒子动力学(DPD)恒温器的变体,它能够控制分子流体的输运性质。标准的DPD恒温器仅作用于沿原子间轴的相对速度。我们的扩展包括对相对速度垂直分量的阻尼,同时保留了保持伽利略不变性的优点,并且在我们的误差范围内也保留了流体动力学性质。这导致了第二个摩擦参数,用于调整系统的输运性质。对简单的 Lennard-Jones 流体和液态水的数值模拟表明,输运性质(如粘度)对新摩擦参数的强度表现出非常敏感的行为。我们设想,这种新的恒温器对于软物质的粗粒化和自适应分辨率模拟将非常有用,在这些模拟中,与全原子模拟相比,粗粒化模型的扩散常数和粘度通常分别过高/过低。