School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, China.
Comput Math Methods Med. 2020 Aug 28;2020:1683013. doi: 10.1155/2020/1683013. eCollection 2020.
In the process of brain-computer interface (BCI), variations across sessions/subjects result in differences in the properties of potential of the brain. This issue may lead to variations in feature distribution of electroencephalogram (EEG) across subjects, which greatly reduces the generalization ability of a classifier. Although subject-dependent (SD) strategy provides a promising way to solve the problem of personalized classification, it cannot achieve expected performance due to the limitation of the amount of data especially for a deep neural network (DNN) classification model. Herein, we propose an instance transfer subject-independent (ITSD) framework combined with a convolutional neural network (CNN) to improve the classification accuracy of the model during motor imagery (MI) task. The proposed framework consists of the following steps. Firstly, an instance transfer learning based on the perceptive Hash algorithm is proposed to measure similarity of spectrogram EEG signals between different subjects. Then, we develop a CNN to decode these signals after instance transfer learning. Next, the performance of classifications by different training strategies (subject-independent- (SI-) CNN, SD-CNN, and ITSD-CNN) are compared. To verify the effectiveness of the algorithm, we evaluate it on the dataset of BCI competition IV-2b. Experiments show that the instance transfer learning can achieve positive instance transfer using a CNN classification model. Among the three different training strategies, the average classification accuracy of ITSD-CNN can achieve 94.7 ± 2.6 and obtain obvious improvement compared with a contrast model ( < 0.01). Compared with other methods proposed in previous research, the framework of ITSD-CNN outperforms the state-of-the-art classification methods with a mean kappa value of 0.664.
在脑机接口(BCI)过程中,由于不同个体的差异,大脑潜在的电活动也存在差异。这个问题可能会导致脑电图(EEG)特征在不同个体之间的分布发生变化,从而极大地降低分类器的泛化能力。尽管基于个体的(SD)策略为解决个性化分类问题提供了一种很有前途的方法,但由于数据量的限制,尤其是对于深度神经网络(DNN)分类模型,它无法实现预期的性能。在此,我们提出了一种实例迁移无依赖个体(ITSD)框架,结合卷积神经网络(CNN),以提高运动想象(MI)任务中模型的分类准确性。所提出的框架包括以下步骤。首先,提出了一种基于感知哈希算法的实例迁移学习方法,以测量不同个体之间的频谱 EEG 信号的相似性。然后,我们开发了一种 CNN 来对经过实例迁移学习后的信号进行解码。接下来,比较了不同训练策略(无依赖个体的(SI-)CNN、SD-CNN 和 ITSD-CNN)的分类性能。为了验证算法的有效性,我们在 BCI 竞赛 IV-2b 数据集上进行了评估。实验表明,实例迁移学习可以使用 CNN 分类模型实现积极的实例迁移。在这三种不同的训练策略中,ITSD-CNN 的平均分类准确率可达 94.7±2.6,与对比模型相比有明显提高(<0.01)。与之前研究中提出的其他方法相比,ITSD-CNN 框架的平均kappa 值为 0.664,优于最新的分类方法。