Division of Plant Sciences, College of Agriculture, Food and Natural Resources, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201.
Department of Biological Sciences, College of Arts and Sciences, and Interdisciplinary Plant Group, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65201.
Plant Physiol. 2020 Nov;184(3):1563-1572. doi: 10.1104/pp.20.01084. Epub 2020 Sep 10.
Perception of a change in light intensity leads to the activation of multiple physiological, metabolic, and molecular responses in plants. These responses allow acclimation to fluctuating light conditions, e.g. sunflecks in field grown plants, preventing cellular damage associated with excess light stress. Perception of light stress by a single Arabidopsis () leaf was recently shown to activate different local and systemic responses that include rapid changes in stomatal aperture size; these were found to be coordinated by a systemic process of reactive oxygen species (ROS)-derived ROS production (i.e. the ROS wave). How light intensity is perceived, and how long the ROS wave stays "on" during this process are, however, unknown. Here we show that triggering of the ROS wave by a local excess light stress treatment results in the induction and maintenance of high levels of systemic ROS for up to 6 h. Despite these high systemic ROS levels, stomatal aperture size returns to control size within 3 h, and the systemic stomatal response can be retriggered within 6 h. These findings suggest that the ROS wave triggers a systemic stress memory mechanism that lasts for 3 to 6 h, but that within 3 h of its activation, stomata become insensitive to ROS and open. We further show that the excess light stress-triggered ROS wave, as well as the excess light stress-triggered local and systemic stomatal aperture closure responses, are dependent on phytochrome B function. Our findings reveal a delicate interplay between excess light stress, phytochrome B, ROS production, and rapid systemic stomatal responses.
光强变化的感知会引发植物的多种生理、代谢和分子反应。这些反应使植物能够适应光强的波动,例如田间生长的植物中的光斑,防止与过量光胁迫相关的细胞损伤。最近,人们发现拟南芥()单个叶片对光胁迫的感知会激活不同的局部和系统响应,包括气孔孔径大小的快速变化;这些变化被发现是由活性氧(ROS)衍生的 ROS 产生的系统过程(即 ROS 波)协调的。然而,目前尚不清楚光强是如何被感知的,以及在这个过程中 ROS 波持续“开启”的时间有多长。在这里,我们表明,局部过量光胁迫处理引发的 ROS 波会导致高达 6 小时的系统性 ROS 水平升高和维持。尽管系统中 ROS 水平很高,但气孔孔径大小在 3 小时内恢复到对照大小,并且在 6 小时内可以重新引发系统气孔反应。这些发现表明,ROS 波触发了一个持续 3 到 6 小时的系统应激记忆机制,但在其激活后的 3 小时内,气孔对 ROS 变得不敏感并张开。我们进一步表明,过量光应激触发的 ROS 波以及过量光应激触发的局部和系统性气孔孔径关闭反应都依赖于光敏色素 B 的功能。我们的研究结果揭示了过量光应激、光敏色素 B、ROS 产生和快速系统气孔反应之间的微妙相互作用。