Suppr超能文献

优化递送以实现高效心脏重编程。

Optimizing delivery for efficient cardiac reprogramming.

机构信息

Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA.

Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, 27710, USA.

出版信息

Biochem Biophys Res Commun. 2020 Nov 26;533(1):9-16. doi: 10.1016/j.bbrc.2020.08.104. Epub 2020 Sep 9.

Abstract

Following heart injury, cardiomyocytes, are lost and are not regenerated. In their place, fibroblasts invade the dead tissue where they generate a scar, which reduces cardiac function. We and others have demonstrated that combinations of specific miRNAs (miR combo) or transcription factors (GMT), delivered by individual lenti-/retro-viruses in vivo, can convert fibroblasts into cardiomyocytes and improve cardiac function. However, the effects are relatively modest due to the low efficiency of delivery of miR combo or GMT. We hypothesized that efficiency would be improved by optimizing delivery. In the first instance, we developed a multicistronic system to express all four miRNAs of miR combo from a single construct. The order of each miRNA in the multicistronic construct gave rise to different levels of miRNA expression. A combination that resulted in equivalent expression levels of each of the four miRNAs of miR combo showed the highest reprogramming efficiency. Further efficiency can be achieved by directly targeting fibroblasts. Screening of several AAV serotypes indicated that AAV1 displayed tropism towards cardiac fibroblasts. Combining multicistronic expression with AAV1 delivery robustly reprogrammed cardiac fibroblasts into cardiomyocytes in vivo.

摘要

心脏损伤后,心肌细胞会丢失且无法再生。成纤维细胞会侵入死亡组织,在那里产生疤痕,从而降低心脏功能。我们和其他人已经证明,通过单个慢病毒/逆转录病毒在体内递送特定的 microRNA(miRNA 组合)或转录因子(GMT)可以将成纤维细胞转化为心肌细胞并改善心脏功能。然而,由于 miRNA 组合或 GMT 的递送效率较低,效果相对较小。我们假设通过优化递送可以提高效率。首先,我们开发了一种多顺反子系统,可从单个构建体表达 miRNA 组合的所有四个 miRNA。多顺反子构建体中每个 miRNA 的顺序会导致 miRNA 表达水平不同。表现出 miRNA 组合的四个 miRNA 表达水平相等的组合显示出最高的重编程效率。通过直接靶向成纤维细胞可以进一步提高效率。对几种 AAV 血清型的筛选表明 AAV1 对心肌成纤维细胞具有向性。多顺反子表达与 AAV1 递送相结合,可在体内将心肌成纤维细胞有效地重编程为心肌细胞。

相似文献

1
Optimizing delivery for efficient cardiac reprogramming.
Biochem Biophys Res Commun. 2020 Nov 26;533(1):9-16. doi: 10.1016/j.bbrc.2020.08.104. Epub 2020 Sep 9.
2
Production of Cardiomyocytes by microRNA-Mediated Reprogramming in Optimized Reprogramming Media.
Methods Mol Biol. 2021;2239:47-59. doi: 10.1007/978-1-0716-1084-8_4.
3
Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes.
Int J Nanomedicine. 2021 Jun 1;16:3741-3754. doi: 10.2147/IJN.S304873. eCollection 2021.
4
MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function.
Circ Res. 2015 Jan 30;116(3):418-24. doi: 10.1161/CIRCRESAHA.116.304510. Epub 2014 Oct 28.
5
Demethylation of H3K27 Is Essential for the Induction of Direct Cardiac Reprogramming by miR Combo.
Circ Res. 2017 Apr 28;120(9):1403-1413. doi: 10.1161/CIRCRESAHA.116.308741. Epub 2017 Feb 16.
6
C166 EVs potentiate miR cardiac reprogramming via miR-148a-3p.
J Mol Cell Cardiol. 2024 May;190:48-61. doi: 10.1016/j.yjmcc.2024.04.002. Epub 2024 Apr 4.
8
Efficient in vivo direct conversion of fibroblasts into cardiomyocytes using a nanoparticle-based gene carrier.
Biomaterials. 2019 Feb;192:500-509. doi: 10.1016/j.biomaterials.2018.11.034. Epub 2018 Nov 29.
10
Induced cardiomyocyte maturation: Cardiac transcription factors are necessary but not sufficient.
PLoS One. 2019 Oct 17;14(10):e0223842. doi: 10.1371/journal.pone.0223842. eCollection 2019.

引用本文的文献

2
Control of cell fate upon transcription factor-driven cardiac reprogramming.
Curr Opin Genet Dev. 2024 Dec;89:102226. doi: 10.1016/j.gde.2024.102226.
3
C166 EVs potentiate miR cardiac reprogramming via miR-148a-3p.
J Mol Cell Cardiol. 2024 May;190:48-61. doi: 10.1016/j.yjmcc.2024.04.002. Epub 2024 Apr 4.
4
Fibroblast Reprogramming in Cardiac Repair.
JACC Basic Transl Sci. 2023 Sep 20;9(1):145-160. doi: 10.1016/j.jacbts.2023.06.012. eCollection 2024 Jan.
5
Can we stop one heart from breaking: triumphs and challenges in cardiac reprogramming.
Curr Opin Genet Dev. 2023 Dec;83:102116. doi: 10.1016/j.gde.2023.102116. Epub 2023 Oct 3.
7
Advances in Cellular Reprogramming-Based Approaches for Heart Regenerative Repair.
Cells. 2022 Dec 3;11(23):3914. doi: 10.3390/cells11233914.
8
AAV vectors: The Rubik's cube of human gene therapy.
Mol Ther. 2022 Dec 7;30(12):3515-3541. doi: 10.1016/j.ymthe.2022.09.015. Epub 2022 Oct 5.
9
Conservation of miR combo based direct cardiac reprogramming.
Biochem Biophys Rep. 2022 Jul 13;31:101310. doi: 10.1016/j.bbrep.2022.101310. eCollection 2022 Sep.
10
A novel Cbx1, PurB, and Sp3 complex mediates long-term silencing of tissue- and lineage-specific genes.
J Biol Chem. 2022 Jun;298(6):102053. doi: 10.1016/j.jbc.2022.102053. Epub 2022 May 20.

本文引用的文献

1
Cardiomyocyte Maturation Requires TLR3 Activated Nuclear Factor Kappa B.
Stem Cells. 2018 Aug;36(8):1198-1209. doi: 10.1002/stem.2833. Epub 2018 Apr 22.
2
Clinical use of lentiviral vectors.
Leukemia. 2018 Jul;32(7):1529-1541. doi: 10.1038/s41375-018-0106-0. Epub 2018 Mar 22.
3
Cardiac gene therapy with adeno-associated virus-based vectors.
Curr Opin Cardiol. 2017 May;32(3):275-282. doi: 10.1097/HCO.0000000000000386.
4
MicroRNAs and Cardiac Regeneration.
Circ Res. 2015 May 8;116(10):1700-11. doi: 10.1161/CIRCRESAHA.116.304377.
5
Stoichiometry of Gata4, Mef2c, and Tbx5 influences the efficiency and quality of induced cardiac myocyte reprogramming.
Circ Res. 2015 Jan 16;116(2):237-44. doi: 10.1161/CIRCRESAHA.116.305547. Epub 2014 Nov 21.
6
MicroRNA induced cardiac reprogramming in vivo: evidence for mature cardiac myocytes and improved cardiac function.
Circ Res. 2015 Jan 30;116(3):418-24. doi: 10.1161/CIRCRESAHA.116.304510. Epub 2014 Oct 28.
7
Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors.
Development. 2014 Nov;141(22):4267-78. doi: 10.1242/dev.114025. Epub 2014 Oct 24.
8
Reprogramming approaches in cardiovascular regeneration.
Curr Treat Options Cardiovasc Med. 2014 Aug;16(8):327. doi: 10.1007/s11936-014-0327-0.
9
Direct reprogramming of cardiac fibroblasts to cardiomyocytes using microRNAs.
Methods Mol Biol. 2014;1150:263-72. doi: 10.1007/978-1-4939-0512-6_18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验