Rizzi Adrien, Leroux Julie, Charron-Lamoureux Vincent, Roy Sébastien, Beauregard Pascale B, Bellenger Jean-Philippe
Centre SÈVE, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
Centre SÈVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
Appl Environ Microbiol. 2020 Oct 28;86(22). doi: 10.1128/AEM.00944-20.
Iron (Fe) is one of the most important micronutrients for most life forms on earth. While abundant in soil, Fe bioavailability in oxic soil is very low. Under environmental conditions, bacteria need to acquire sufficient Fe to sustain growth while limiting the energy cost of siderophore synthesis. Biofilm formation might mitigate this Fe stress, since it was shown to accumulate Fe in certain Gram-negative bacteria and that this Fe could be mobilized for uptake. However, it is still unclear if, and to what extent, the amount of Fe accumulated in the biofilm can sustain growth and if the mobilization of this local Fe pool is modulated by the availability of environmental Fe (i.e., Fe outside the biofilm matrix). Here, we use a nondomesticated strain of the ubiquitous biofilm-forming soil bacterium and stable Fe isotopes to precisely evaluate the origin of Fe during growth in the presence of tannic acid and hydroxides, used as proxies for different environmental conditions. We report that this strain can accumulate a large quantity of Fe in the biofilm, largely exceeding Fe associated with cells. We also report that only a fraction of biofilm-bound Fe is available for uptake in the absence of other sources of Fe in the vicinity of the biofilm. We observed that the availability of environmental Fe modulates the usage of this pool of biofilm-bound Fe. Finally, our data suggest that consumption of biofilm-bound Fe relates to the efficacy of to transport Fe from the environment to the biofilm, possibly through siderophores. Recent pieces of evidence suggest that Fe bound to the biofilm could assume at least two important functions, a local source of Fe for uptake and a support to extracellular metabolism, such as extracellular electron transfer. Our results show that can use biofilm-bound Fe for uptake only if it does not compromise Fe homeostasis of the biofilm, i.e., maintains a minimum Fe concentration in the biofilm for extracellular purposes. We propose a theoretical framework based on our results and recent literature to explain how manages biofilm-bound Fe and Fe uptake in response to environmental Fe availability. These results provide important insights into the management of biofilm-bound and environmental Fe by in response to Fe stress.
铁(Fe)是地球上大多数生命形式最重要的微量营养素之一。虽然铁在土壤中含量丰富,但在有氧土壤中铁的生物有效性非常低。在环境条件下,细菌需要获取足够的铁来维持生长,同时限制铁载体合成的能量成本。生物膜形成可能会减轻这种铁胁迫,因为已表明在某些革兰氏阴性细菌中生物膜会积累铁,并且这种铁可以被动员用于吸收。然而,生物膜中积累的铁量是否以及在何种程度上能够维持生长,以及这种局部铁库的动员是否受环境铁(即生物膜基质外的铁)可用性的调节,目前仍不清楚。在这里,我们使用一种未驯化的、普遍存在的形成生物膜的土壤细菌菌株和稳定的铁同位素,来精确评估在存在单宁酸和氢氧化物(用作不同环境条件的替代物)的情况下生长过程中铁的来源。我们报告称,这种菌株能够在生物膜中积累大量的铁,大大超过与细胞相关的铁。我们还报告称,在生物膜附近没有其他铁源的情况下,只有一部分与生物膜结合的铁可用于吸收。我们观察到环境铁的可用性会调节这种与生物膜结合的铁库的利用。最后,我们的数据表明,消耗与生物膜结合的铁与该菌株将铁从环境转运到生物膜的效率有关,可能是通过铁载体。最近的证据表明,与生物膜结合的铁可能至少具有两个重要功能,即作为吸收的局部铁源和对细胞外代谢(如细胞外电子转移)的支持。我们的结果表明,该菌株只有在不损害生物膜的铁稳态(即维持生物膜中用于细胞外目的的最低铁浓度)的情况下,才能利用与生物膜结合的铁进行吸收。我们根据我们的结果和最近的文献提出了一个理论框架,以解释该菌株如何响应环境铁的可用性来管理与生物膜结合的铁和铁吸收。这些结果为该菌株在铁胁迫下管理与生物膜结合的铁和环境铁提供了重要见解。