Suppr超能文献

大豆对干旱的耐受性取决于相关的慢生根瘤菌菌株。

Soybean tolerance to drought depends on the associated Bradyrhizobium strain.

作者信息

Cerezini Paula, Kuwano Biana Harumi, Grunvald Anna Karolina, Hungria Mariangela, Nogueira Marco Antonio

机构信息

Department of Agronomy, Universidade Estadual de Londrina, C. Postal 10.011, Londrina, PR, 86057-970, Brazil.

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF, Brazil.

出版信息

Braz J Microbiol. 2020 Dec;51(4):1977-1986. doi: 10.1007/s42770-020-00375-1. Epub 2020 Sep 11.

Abstract

We evaluated the effect of three different Bradyrhizobium strains inoculated in two soybean genotypes (R01-581F, drought-tolerant, and NA5858RR, drought-sensitive) submitted to drought in two trials conducted simultaneously under greenhouse. The strains (SEMIA 587, SEMIA 5019 (both B. elkanii), and SEMIA 5080 (B. diazoefficiens)) were inoculated individually in each genotype and then submitted to water restriction (or kept well-watered, control) between 45 and 62 days after emergence. No deep changes in plant physiological variables were observed under the moderate water restriction imposed during the first 10 days. Nevertheless, photosynthesis and transpiration decreased after the severe water restriction imposed for further 7 days. Water restriction reduced growth (- 30%) and the number of nodules (- 47% and - 58% for R01-581F and NA5858RR, respectively) of both genotypes, with a negative effect on N-metabolism. The genotype R01-581F inoculated with SEMIA 5019 strain had higher photosynthetic rates compared with NA5858RR, regardless of the Bradyrhizobium strain. On average, R01-581F showed better performance under drought than NA5858RR, with higher number of nodules (51 vs. 38 nodules per plant, respectively) and less accumulation of ureides in petioles (15 μmol g vs. 34 μmol g, respectively). Moreover, plants inoculated with SEMIA 5080 had higher glutamine synthetase activity under severe water restriction, especially in the drought-tolerant R01-518F, suggesting maintenance of N metabolism under drought. The Bradyrhizobium strain affects the host plant responses to drought in which the strain SEMIA 5080 improves the drought tolerance of R01-518F genotype.

摘要

我们在温室中同时进行的两项试验里,评估了接种三种不同慢生根瘤菌菌株对两种大豆基因型(耐旱的R01 - 581F和干旱敏感的NA5858RR)干旱胁迫的影响。这些菌株(SEMIA 587、SEMIA 5019(均为埃尔坎慢生根瘤菌)和SEMIA 5080(高效固氮慢生根瘤菌))分别接种到每种基因型中,然后在出苗后45至62天进行水分限制(或保持充分浇水作为对照)。在前10天施加的中度水分限制下,未观察到植物生理变量有深度变化。然而,在进一步施加7天的严重水分限制后,光合作用和蒸腾作用下降。水分限制降低了两种基因型的生长(-30%)和根瘤数量(R01 - 581F和NA5858RR分别为-47%和-58%),对氮代谢有负面影响。无论接种哪种慢生根瘤菌菌株,接种SEMIA 5019菌株的R01 - 581F基因型的光合速率都高于NA5858RR。平均而言,R01 - 581F在干旱条件下的表现优于NA5858RR,根瘤数量更多(分别为每株51个和38个根瘤),叶柄中脲类积累更少(分别为15 μmol/g和34 μmol/g)。此外,接种SEMIA 5080的植株在严重水分限制下谷氨酰胺合成酶活性更高,尤其是在耐旱的R01 - 518F中,这表明在干旱条件下氮代谢得以维持。慢生根瘤菌菌株影响宿主植物对干旱的反应,其中SEMIA 5080菌株提高了R01 - 518F基因型的耐旱性。

相似文献

1
Soybean tolerance to drought depends on the associated Bradyrhizobium strain.
Braz J Microbiol. 2020 Dec;51(4):1977-1986. doi: 10.1007/s42770-020-00375-1. Epub 2020 Sep 11.
2
Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)?
Arch Microbiol. 2019 Apr;201(3):325-335. doi: 10.1007/s00203-018-01617-5. Epub 2019 Jan 7.
3
Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts?
World J Microbiol Biotechnol. 2018 Jun 9;34(7):87. doi: 10.1007/s11274-018-2474-z.
4
7
Effector-Triggered Immunity Determines Host Genotype-Specific Incompatibility in Legume-Rhizobium Symbiosis.
Plant Cell Physiol. 2016 Aug;57(8):1791-800. doi: 10.1093/pcp/pcw104. Epub 2016 Jun 3.
9
Growth-promoting effects of Bradyrhizobium soybean symbionts in black oats, white oats, and ryegrass.
Braz J Microbiol. 2021 Sep;52(3):1451-1460. doi: 10.1007/s42770-021-00523-1. Epub 2021 May 22.
10
Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress.
PLoS One. 2012;7(6):e38554. doi: 10.1371/journal.pone.0038554. Epub 2012 Jun 7.

引用本文的文献

本文引用的文献

1
Selection of host-plant genotype: the next step to increase grain legume N2 fixation activity.
J Exp Bot. 2018 Jun 27;69(15):3523-3530. doi: 10.1093/jxb/ery115.
2
Drought stress responses in crops.
Funct Integr Genomics. 2014 Mar;14(1):11-22. doi: 10.1007/s10142-013-0356-x. Epub 2014 Jan 10.
3
Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov.
Int J Syst Evol Microbiol. 2013 Sep;63(Pt 9):3342-3351. doi: 10.1099/ijs.0.049130-0. Epub 2013 Mar 15.
4
Genetic variability in Bradyrhizobium japonicum strains nodulating soybean [Glycine max (L.) Merrill].
World J Microbiol Biotechnol. 2012 Apr;28(4):1831-5. doi: 10.1007/s11274-011-0964-3. Epub 2011 Dec 1.
5
Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.
Plant J. 2012 Nov;72(3):355-67. doi: 10.1111/j.1365-313X.2012.05086.x. Epub 2012 Aug 9.
7
A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant.
Plant J. 2008 May;54(3):496-509. doi: 10.1111/j.1365-313X.2008.03440.x. Epub 2008 Feb 7.
9
Differential analyses of glyoxylate derivatives.
Anal Biochem. 1970 Jan;33(1):143-57. doi: 10.1016/0003-2697(70)90448-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验