Suppr超能文献

高效搜索复杂系统中的信息核心:在脑网络中的应用。

Efficient search for informational cores in complex systems: Application to brain networks.

机构信息

Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.

Araya, Inc., Tokyo, Japan.

出版信息

Neural Netw. 2020 Dec;132:232-244. doi: 10.1016/j.neunet.2020.08.020. Epub 2020 Aug 28.

Abstract

An important step in understanding the nature of the brain is to identify "cores" in the brain network, where brain areas strongly interact with each other. Cores can be considered as essential sub-networks for brain functions. In the last few decades, an information-theoretic approach to identifying cores has been developed. In this approach, interactions between parts are measured by an information loss function, which quantifies how much information would be lost if interactions between parts were removed. Then, a core called a "complex" is defined as a subsystem wherein the amount of information loss is locally maximal. Although identifying complexes can be a novel and useful approach, its application is practically impossible because computation time grows exponentially with system size. Here we propose a fast and exact algorithm for finding complexes, called Hierarchical Partitioning for Complex search (HPC). HPC hierarchically partitions systems to narrow down candidates for complexes. The computation time of HPC is polynomial, enabling us to find complexes in large systems (up to several hundred) in a practical amount of time. We prove that HPC is exact when an information loss function satisfies a mathematical property, monotonicity. We show that mutual information is one such information loss function. We also show that a broad class of submodular functions can be considered as such information loss functions, indicating the expandability of our framework to the class. We applied HPC to electrocorticogram recordings from a monkey and demonstrated that HPC revealed temporally stable and characteristic complexes.

摘要

理解大脑本质的重要一步是识别大脑网络中的“核心”,即大脑区域之间强烈相互作用的区域。核心可以被认为是大脑功能的基本子网。在过去的几十年中,已经开发出一种基于信息论的识别核心的方法。在这种方法中,通过信息损失函数来衡量部分之间的相互作用,该函数量化了如果去除部分之间的相互作用将会损失多少信息。然后,将一个称为“复杂”的核心定义为一个子系统,其中信息损失的量是局部最大的。虽然识别复合物可能是一种新颖且有用的方法,但由于计算时间随系统规模呈指数增长,因此实际上无法应用。在这里,我们提出了一种快速而精确的复合物搜索算法,称为用于复合物搜索的分层分区(HPC)。HPC 分层分区系统以缩小复合物候选者的范围。HPC 的计算时间是多项式的,使得我们能够在实际的时间内找到大型系统(多达数百个)中的复合物。我们证明了当信息损失函数满足数学性质单调性时,HPC 是精确的。我们表明互信息是这样的信息损失函数之一。我们还表明,广泛的亚模函数类可以被视为此类信息损失函数,表明我们的框架可扩展到该类。我们将 HPC 应用于猴子的脑电记录,并证明 HPC 揭示了具有时间稳定性和特征的复合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验