Suppr超能文献

一种预测蛋白质 S-谷胱甘肽化的新方法。

A novel approach for predicting protein S-glutathionylation.

机构信息

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov St. 32, 119991, Moscow, Russia.

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, 65 Profsoyuznaya street, Moscow, 117997, Russia.

出版信息

BMC Bioinformatics. 2020 Sep 14;21(Suppl 11):282. doi: 10.1186/s12859-020-03571-w.

Abstract

BACKGROUND

S-glutathionylation is the formation of disulfide bonds between the tripeptide glutathione and cysteine residues of the protein, protecting them from irreversible oxidation and in some cases causing change in their functions. Regulatory glutathionylation of proteins is a controllable and reversible process associated with cell response to the changing redox status. Prediction of cysteine residues that undergo glutathionylation allows us to find new target proteins, which function can be altered in pathologies associated with impaired redox status. We set out to analyze this issue and create new tool for predicting S-glutathionylated cysteine residues.

RESULTS

One hundred forty proteins with experimentally proven S-glutathionylated cysteine residues were found in the literature and the RedoxDB database. These proteins contain 1018 non-S-glutathionylated cysteines and 235 S-glutathionylated ones. Based on 235 S-glutathionylated cysteines, non-redundant positive dataset of 221 heptapeptide sequences of S-glutathionylated cysteines was made. Based on 221 heptapeptide sequences, a position-specific matrix was created by analyzing the protein sequence near the cysteine residue (three amino acid residues before and three after the cysteine). We propose the method for calculating the glutathionylation propensity score, which utilizes the position-specific matrix and a criterion for predicting glutathionylated peptides.

CONCLUSION

Non-S-glutathionylated sites were enriched by cysteines in - 3 and + 3 positions. The proposed prediction method demonstrates 76.6% of correct predictions of S-glutathionylated cysteines. This method can be used for detecting new glutathionylation sites, especially in proteins with an unknown structure.

摘要

背景

S-谷胱甘肽化是三肽谷胱甘肽与蛋白质半胱氨酸残基之间形成二硫键的过程,可保护它们免受不可逆氧化,并在某些情况下导致其功能发生变化。蛋白质的调节性谷胱甘肽化是一个可控制和可逆的过程,与细胞对不断变化的氧化还原状态的反应有关。预测发生谷胱甘肽化的半胱氨酸残基可以帮助我们找到新的靶蛋白,这些靶蛋白的功能在与氧化还原状态受损相关的病理中可能会发生改变。我们着手分析这个问题,并创建了一个新的工具来预测 S-谷胱甘肽化的半胱氨酸残基。

结果

在文献和 RedoxDB 数据库中发现了 140 种具有实验证实的 S-谷胱甘肽化半胱氨酸残基的蛋白质。这些蛋白质包含 1018 个非 S-谷胱甘肽化的半胱氨酸和 235 个 S-谷胱甘肽化的半胱氨酸。基于 235 个 S-谷胱甘肽化的半胱氨酸,制作了一个由 221 个 S-谷胱甘肽化半胱氨酸的非冗余阳性七肽序列组成的数据集。基于 221 个七肽序列,通过分析半胱氨酸残基附近的蛋白质序列(半胱氨酸前三个和后三个氨基酸),创建了一个位置特异性矩阵。我们提出了一种计算谷胱甘肽化倾向评分的方法,该方法利用位置特异性矩阵和预测谷胱甘肽化肽的标准。

结论

非 S-谷胱甘肽化的位点在-3 和+3 位被半胱氨酸富集。所提出的预测方法对半胱氨酸 S-谷胱甘肽化的正确预测率为 76.6%。该方法可用于检测新的谷胱甘肽化位点,特别是在未知结构的蛋白质中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ee5/7489215/806e1e7a2d9e/12859_2020_3571_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验