Suppr超能文献

多源对抗域自适应在 RSVP 任务中减少校准工作。

Reducing Calibration Efforts in RSVP Tasks With Multi-Source Adversarial Domain Adaptation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Nov;28(11):2344-2355. doi: 10.1109/TNSRE.2020.3023761. Epub 2020 Nov 6.

Abstract

Rapid Serial Visual Presentation (RSVP)-based Brain-Computer Interface (BCI) is an efficient information detection technology by detecting event-related brain responses evoked by target visual stimuli. However, a time-consuming calibration procedure is needed before a new user can use this system. Thus, it is important to reduce calibration efforts for BCI applications. In this article, we propose a multi-source conditional adversarial domain adaptation with the correlation metric learning (mCADA-C) framework that utilizes data from other subjects to reduce the data requirement from the new subject for training the model. This model utilizes adversarial training to enable a CNN-based feature extraction network to extract common features from different domains. A correlation metric learning (CML) loss is proposed to constrain the correlation of features based on class and domain to maximize the intra-class similarity and minimize inter-class similarity. Also, a multi-source framework with a source selection strategy is adopted to integrate the results of multiple domain adaptation. We constructed an RSVP-based dataset that includes 11 subjects each performing three RSVP experiments on three different days. The experimental results demonstrate that our proposed method can achieve 87.72% cross-subject balanced-accuracy under one block calibration. The results indicate our method can realize a higher performance with less calibration efforts.

摘要

基于快速序列视觉呈现(RSVP)的脑-机接口(BCI)是一种高效的信息检测技术,通过检测目标视觉刺激引发的与事件相关的大脑反应来实现。然而,新用户在使用该系统之前需要进行耗时的校准过程。因此,对于 BCI 应用来说,减少校准工作非常重要。在本文中,我们提出了一种基于多源条件对抗域自适应的相关度量学习(mCADA-C)框架,该框架利用来自其他受试者的数据来减少新受试者在训练模型时所需的数据量。该模型利用对抗训练使基于 CNN 的特征提取网络能够从不同域中提取共同特征。我们提出了一种相关度量学习(CML)损失函数,该函数基于类和域来约束特征的相关性,以最大化类内相似性并最小化类间相似性。此外,还采用了一种具有源选择策略的多源框架来整合多个域自适应的结果。我们构建了一个基于 RSVP 的数据集,其中包含 11 名受试者,每个受试者在三个不同的日子进行三次 RSVP 实验。实验结果表明,我们的方法在一个块校准下可以达到 87.72%的跨受试者平衡准确率。结果表明,我们的方法可以用更少的校准工作实现更高的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验