Suppr超能文献

机器学习在肿瘤学中的应用:临床医生应该了解哪些知识?

Machine Learning in Oncology: What Should Clinicians Know?

机构信息

Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH.

Center for Clinical Artificial Intelligence, Cleveland Clinic, Cleveland, OH.

出版信息

JCO Clin Cancer Inform. 2020 Sep;4:799-810. doi: 10.1200/CCI.20.00049.

Abstract

The volume and complexity of scientific and clinical data in oncology have grown markedly over recent years, including but not limited to the realms of electronic health data, radiographic and histologic data, and genomics. This growth holds promise for a deeper understanding of malignancy and, accordingly, more personalized and effective oncologic care. Such goals require, however, the development of new methods to fully make use of the wealth of available data. Improvements in computer processing power and algorithm development have positioned machine learning, a branch of artificial intelligence, to play a prominent role in oncology research and practice. This review provides an overview of the basics of machine learning and highlights current progress and challenges in applying this technology to cancer diagnosis, prognosis, and treatment recommendations, including a discussion of current takeaways for clinicians.

摘要

近年来,肿瘤学领域的科学和临床数据的数量和复杂性显著增加,包括但不限于电子健康数据、影像学和组织学数据以及基因组学。这一增长有望加深对恶性肿瘤的理解,从而提供更个性化和有效的肿瘤学护理。然而,这些目标需要开发新的方法来充分利用现有的丰富数据。计算机处理能力的提高和算法的发展使得机器学习,人工智能的一个分支,在肿瘤学研究和实践中发挥了突出的作用。这篇综述概述了机器学习的基础知识,并强调了将该技术应用于癌症诊断、预后和治疗建议的最新进展和挑战,包括对临床医生的一些启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验