Dong Yifan, Nikolis Vasileios C, Talnack Felix, Chin Yi-Chun, Benduhn Johannes, Londi Giacomo, Kublitski Jonas, Zheng Xijia, Mannsfeld Stefan C B, Spoltore Donato, Muccioli Luca, Li Jing, Blase Xavier, Beljonne David, Kim Ji-Seon, Bakulin Artem A, D'Avino Gabriele, Durrant James R, Vandewal Koen
Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
Dresden Integrated Centre for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187, Dresden, Germany.
Nat Commun. 2020 Sep 15;11(1):4617. doi: 10.1038/s41467-020-18439-z.
Organic solar cells usually utilise a heterojunction between electron-donating (D) and electron-accepting (A) materials to split excitons into charges. However, the use of D-A blends intrinsically limits the photovoltage and introduces morphological instability. Here, we demonstrate that polycrystalline films of chemically identical molecules offer a promising alternative and show that photoexcitation of α-sexithiophene (α-6T) films results in efficient charge generation. This leads to α-6T based homojunction organic solar cells with an external quantum efficiency reaching up to 44% and an open-circuit voltage of 1.61 V. Morphological, photoemission, and modelling studies show that boundaries between α-6T crystalline domains with different orientations generate an electrostatic landscape with an interfacial energy offset of 0.4 eV, which promotes the formation of hybridised exciton/charge-transfer states at the interface, dissociating efficiently into free charges. Our findings open new avenues for organic solar cell design where material energetics are tuned through molecular electrostatic engineering and mesoscale structural control.
有机太阳能电池通常利用供电子(D)材料和受电子(A)材料之间的异质结将激子分裂为电荷。然而,使用D - A混合材料本质上限制了光电压并导致形态不稳定。在此,我们证明化学性质相同的分子的多晶膜提供了一种有前景的替代方案,并表明α - 六噻吩(α - 6T)膜的光激发导致高效的电荷产生。这使得基于α - 6T的同质结有机太阳能电池的外量子效率高达44%,开路电压为1.61 V。形态学、光发射和建模研究表明,不同取向的α - 6T晶域之间的边界产生了具有0.4 eV界面能偏移的静电势场,这促进了界面处杂化激子/电荷转移态的形成,并有效地解离为自由电荷。我们的发现为有机太阳能电池设计开辟了新途径,其中通过分子静电工程和中尺度结构控制来调节材料的能量。