IEEE Trans Biomed Eng. 2021 Jul;68(7):2098-2109. doi: 10.1109/TBME.2020.3024970. Epub 2021 Jun 17.
Arrhythmia detection and classification is a crucial step for diagnosing cardiovascular diseases. However, deep learning models that are commonly used and trained in end-to-end fashion are not able to provide good interpretability. In this paper, we address this deficiency by proposing the first novel interpretable arrhythmia classification approach based on a human-machine collaborative knowledge representation. Our approach first employs an AutoEncoder to encode electrocardiogram signals into two parts: hand-encoding knowledge and machine-encoding knowledge. A classifier then takes as input the encoded knowledge to classify arrhythmia heartbeats with or without human in the loop (HIL). Experiments and evaluation on the MIT-BIH Arrhythmia Database demonstrate that our new approach not only can effectively classify arrhythmia while offering interpretability, but also can improve the classification accuracy by adjusting the hand-encoding knowledge with our HIL mechanism.
心律失常检测和分类是诊断心血管疾病的关键步骤。然而,端到端方式训练的深度学习模型无法提供良好的可解释性。在本文中,我们通过提出第一个基于人机协作知识表示的新型可解释心律失常分类方法来解决这一不足。我们的方法首先使用自动编码器将心电图信号编码为两部分:人工编码知识和机器编码知识。然后,分类器将编码后的知识作为输入,在人机交互(HIL)的情况下对有或没有心律失常的心跳进行分类。在 MIT-BIH 心律失常数据库上的实验和评估表明,我们的新方法不仅可以在提供可解释性的同时有效分类心律失常,还可以通过我们的 HIL 机制调整人工编码知识来提高分类准确性。