Departamento de Genética y Microbiología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain.
Department of Biology, Plant Physiology and Photobiology, University of Marburg, 35032 Marburg, Germany.
Curr Biol. 2020 Nov 16;30(22):4483-4490.e4. doi: 10.1016/j.cub.2020.08.051. Epub 2020 Sep 17.
Cryptochromes and photolyases are blue-light photoreceptors and DNA-repair enzymes, respectively, with conserved domains and a common ancestry [1-3]. Photolyases use UV-A and blue light to repair lesions in DNA caused by UV radiation, photoreactivation, although cryptochromes have specialized roles ranging from the regulation of photomorphogenesis in plants, to clock function in animals [4-7]. A group of cryptochromes (cry-DASH) [8] from bacteria, plants, and animals has been shown to repair in vitro cyclobutane pyrimidine dimers (CPDs) in single-stranded DNA (ssDNA), but not in double-stranded DNA (dsDNA) [9]. Cry-DASH are evolutionary related to 6-4 photolyases and animal cryptochromes, but their biological role has remained elusive. The analysis of several crystal structures of members of the cryptochrome and photolyase family (CPF) allowed the identification of structural and functional similarities between photolyases and cryptochromes [8, 10-12] and led to the proposal that the absence of dsDNA repair activity in cry-DASH is due to the lack of an efficient flipping of the lesion into the catalytic pocket [13]. However, in the fungus Phycomyces blakesleeanus, cry-DASH has been shown to be capable of repairing CPD lesions in dsDNA as a bona fide photolyase [14]. Here, we show that cry-DASH of a related fungus, Mucor circinelloides, not only repairs CPDs in dsDNA in vitro but is the enzyme responsible for photoreactivation in vivo. A structural model of the M. circinelloides cry-DASH suggests that the capacity to repair lesions in dsDNA is an evolutionary adaptation from an ancestor that only had the capacity to repair lesions in ssDNA.
隐色体和光解酶分别是蓝光光受体和 DNA 修复酶,它们具有保守结构域和共同的起源[1-3]。光解酶利用 UV-A 和蓝光修复由 UV 辐射、光复活引起的 DNA 损伤,尽管隐色体在植物的光形态建成调控、动物的时钟功能等方面具有专门的作用[4-7]。来自细菌、植物和动物的一组隐色体(cry-DASH)[8]已被证明可以在体外修复单链 DNA(ssDNA)中的环丁烷嘧啶二聚体(CPD),但不能修复双链 DNA(dsDNA)[9]。Cry-DASH 与 6-4 光解酶和动物隐色体在进化上有关,但它们的生物学作用仍不清楚。对隐色体和光解酶家族(CPF)成员的几个晶体结构的分析,确定了光解酶和隐色体之间的结构和功能相似性[8,10-12],并提出 cry-DASH 缺乏双链 DNA 修复活性是由于缺乏有效将损伤翻转到催化口袋[13]。然而,在真菌 Phycomyces blakesleeanus 中,cry-DASH 已被证明能够作为真正的光解酶修复 dsDNA 中的 CPD 损伤[14]。在这里,我们表明,相关真菌 Mucor circinelloides 的 cry-DASH 不仅能够在体外修复 dsDNA 中的 CPD,而且是体内光复活的酶。M. circinelloides cry-DASH 的结构模型表明,修复 dsDNA 损伤的能力是从仅具有修复 ssDNA 损伤能力的祖先进化而来的适应。