Suppr超能文献

分子生成器的图灵测试。

A Turing Test for Molecular Generators.

机构信息

GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.

出版信息

J Med Chem. 2020 Oct 22;63(20):11964-11971. doi: 10.1021/acs.jmedchem.0c01148. Epub 2020 Oct 12.

Abstract

Machine learning approaches promise to accelerate and improve success rates in medicinal chemistry programs by more effectively leveraging available data to guide a molecular design. A key step of an automated computational design algorithm is molecule generation, where the machine is required to design high-quality, drug-like molecules within the appropriate chemical space. Many algorithms have been proposed for molecular generation; however, a challenge is how to assess the validity of the resulting molecules. Here, we report three Turing-inspired tests designed to evaluate the performance of molecular generators. Profound differences were observed between the performance of molecule generators in these tests, highlighting the importance of selection of the appropriate design algorithms for specific circumstances. One molecule generator, based on match molecular pairs, performed excellently against all tests and thus provides a valuable component for machine-driven medicinal chemistry design workflows.

摘要

机器学习方法有望通过更有效地利用可用数据来指导分子设计,从而加速和提高药物化学项目的成功率。自动化计算设计算法的关键步骤是分子生成,机器需要在所规定的化学空间内设计高质量、类似药物的分子。已经提出了许多用于分子生成的算法;然而,一个挑战是如何评估生成分子的有效性。在这里,我们报告了三个受图灵启发的测试,旨在评估分子生成器的性能。在这些测试中,观察到分子生成器的性能存在显著差异,这突出表明在特定情况下选择适当的设计算法的重要性。一种基于匹配分子对的分子生成器在所有测试中表现出色,因此为机器驱动的药物化学设计工作流程提供了有价值的组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验