Suppr超能文献

节能型化学电阻式气体传感器的最新进展:综述

Recent advances in energy-saving chemiresistive gas sensors: A review.

作者信息

Majhi Sanjit Manohar, Mirzaei Ali, Kim Hyoun Woo, Kim Sang Sub, Kim Tae Whan

机构信息

Division of Materials Science and Engineering, Hanyang University, Seoul, 04763, South Korea.

The Research Institute of Industrial Science, Hanyang University, Seoul, 04763, South Korea.

出版信息

Nano Energy. 2021 Jan;79:105369. doi: 10.1016/j.nanoen.2020.105369. Epub 2020 Sep 17.

Abstract

With the tremendous advances in technology, gas-sensing devices are being popularly used in many distinct areas, including indoor environments, industries, aviation, and detectors for various toxic domestic gases and vapors. Even though the most popular type of gas sensor, namely, resistive-based gas sensors, have many advantages over other types of gas sensors, their high working temperatures lead to high energy consumption, thereby limiting their practical applications, especially in mobile and portable devices. As possible ways to deal with the high-power consumption of resistance-based sensors, different strategies such as self-heating, MEMS technology, and room-temperature operation using especial morphologies, have been introduced in recent years. In this review, we discuss different types of energy-saving chemisresitive gas sensors including self-heated gas sensors, MEMS based gas sensors, room temperature operated flexible/wearable sensor and their application in the fields of environmental monitoring. At the end, the review will be concluded by providing a summary, challenges, recent trends, and future perspectives.

摘要

随着技术的巨大进步,气体传感设备在许多不同领域得到广泛应用,包括室内环境、工业、航空以及各种家用有毒气体和蒸汽的探测器。尽管最流行的气体传感器类型,即基于电阻的气体传感器,相对于其他类型的气体传感器有许多优点,但其高工作温度导致高能耗,从而限制了它们的实际应用,特别是在移动和便携式设备中。作为应对基于电阻传感器高功耗的可能方法,近年来已经引入了不同的策略,如自热、微机电系统(MEMS)技术以及使用特殊形态的室温操作。在这篇综述中,我们讨论了不同类型的节能化学电阻式气体传感器,包括自热气体传感器、基于MEMS的气体传感器、室温操作的柔性/可穿戴传感器及其在环境监测领域的应用。最后,将通过提供总结、挑战、近期趋势和未来展望来结束这篇综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验