Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.
Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Earth and Environment, Boston University, Boston, MA, USA.
Metab Eng. 2020 Nov;62:207-220. doi: 10.1016/j.ymben.2020.09.002. Epub 2020 Sep 19.
Coupling recent advancements in genetic engineering of diverse microbes and gas-driven fermentation provides a path towards sustainable commodity chemical production. Cupriavidus necator H16 is a suitable species for this task because it effectively utilizes H and CO and is genetically tractable. Here, we demonstrate the versatility of C. necator for chemical production by engineering it to produce three products from CO under lithotrophic conditions: sucrose, polyhydroxyalkanoates (PHAs), and lipochitooligosaccharides (LCOs). We engineered sucrose production in a co-culture system with heterotrophic growth 30 times that of WT C. necator. We engineered PHA production (20-60% DCW) and selectively altered product composition by combining different thioesterases and phaCs to produce copolymers directly from CO. And, we engineered C. necator to convert CO into the LCO, a plant growth enhancer, with titers of ~1.4 mg/L-equivalent to yields in its native source, Bradyrhizobium. We applied the LCOs to germinating seeds as well as corn plants and observed increases in a variety of growth parameters. Taken together, these results expand our understanding of how a gas-utilizing bacteria can promote sustainable production.
利用基因工程对不同微生物进行改造,并结合气体驱动发酵,为可持续的大宗商品化学品生产提供了一条途径。恶臭假单胞菌 H16 是完成这项任务的合适物种,因为它能有效地利用 H 和 CO,且具有良好的遗传操作性。在这里,我们通过对 C. necator 进行工程改造,使其在自养条件下利用 CO 生产三种产品:蔗糖、聚羟基烷酸酯(PHA)和脂寡糖(LCO),展示了 C. necator 在化学品生产方面的多功能性。我们在与异养生长相比具有 30 倍生长优势的共培养系统中设计了蔗糖的生产。我们设计了 PHA 的生产(20-60% DCW),并通过结合不同的硫酯酶和 phaC 来选择性地改变产物组成,直接从 CO 生产共聚物。并且,我们设计了 C. necator 将 CO 转化为 LCO,一种植物生长促进剂,其产量与天然来源的根瘤菌相当。我们将 LCO 应用于萌发的种子和玉米植株,并观察到多种生长参数的增加。总之,这些结果扩展了我们对气体利用细菌如何促进可持续生产的理解。