Suppr超能文献

用于研究肿瘤-基质相互作用和药物药代动力学的高通量芯片肿瘤平台。

High-Throughput Tumor-on-a-Chip Platform to Study Tumor-Stroma Interactions and Drug Pharmacokinetics.

作者信息

Chi Chun-Wei, Lao Yeh-Hsing, Ahmed A H Rezwanuddin, Benoy Elizabeth C, Li Chenghai, Dereli-Korkut Zeynep, Fu Bingmei M, Leong Kam W, Wang Sihong

机构信息

Department of Biomedical Engineering, CUNY- The City College of New York, New York, NY, 10031, USA.

Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.

出版信息

Adv Healthc Mater. 2020 Nov;9(21):e2000880. doi: 10.1002/adhm.202000880. Epub 2020 Sep 23.

Abstract

Drug screening in oncology, especially for triple-negative breast cancer (TNBC), has high demand but remains unsatisfactory. Currently available models are either nonrepresentative of the complex tumor microenvironment or only suitable for low throughput screening, resulting in a low-yield success for drug development. To tackle these issues, the L-TumorChip system is developed in this study. It is a three-layered microfluidic tumor-on-a-chip platform integrating tumor microvasculature and tumor-stromal microenvironment with high throughput screening capability. Its layered and modular design is readily scalable through simple integration of multiple units. Here, L-TumorChip is validated with a TNBC model. The L-TumorChip system emulates certain tumor-stroma complexities and tumor-endothelium interactions, including TNBC invasion through the leaky microvasculature and angiogenesis. Additionally, with this L-TumorChip, the influence of different stromal cells, including normal fibroblasts, mesenchymal stem cells, and cancer-associated fibroblasts (CAF), on cancer cell growth as well as the stromal effects on drug responses to doxorubicin treatment is investigated. The presence of CAF delays drug pharmacokinetics, while apoptotic responses indicated by caspase-3 activities are higher in coculture with normal fibroblasts. Collectively, the L-TumorChip system represents a translational high-throughput screening toolkit that enables drug screening with a scenario closer to the in vivo conditions. This potential use may therefore facilitate development of new cancer drugs.

摘要

肿瘤学中的药物筛选,尤其是针对三阴性乳腺癌(TNBC)的药物筛选,需求很高但仍不尽人意。目前可用的模型要么无法代表复杂的肿瘤微环境,要么仅适用于低通量筛选,导致药物开发的成功率较低。为了解决这些问题,本研究开发了L-TumorChip系统。它是一个三层微流控芯片肿瘤平台,集成了肿瘤微脉管系统和肿瘤基质微环境,具有高通量筛选能力。其分层和模块化设计通过简单整合多个单元即可轻松扩展。在此,L-TumorChip通过一个TNBC模型进行了验证。L-TumorChip系统模拟了某些肿瘤-基质复杂性和肿瘤-内皮细胞相互作用,包括TNBC通过渗漏的微脉管系统的侵袭和血管生成。此外,利用这个L-TumorChip,研究了不同基质细胞,包括正常成纤维细胞、间充质干细胞和癌症相关成纤维细胞(CAF)对癌细胞生长的影响,以及基质对阿霉素治疗药物反应的影响。CAF的存在会延迟药物的药代动力学,而与正常成纤维细胞共培养时,由caspase-3活性指示的凋亡反应更高。总体而言,L-TumorChip系统代表了一种转化型高通量筛选工具包,能够在更接近体内条件的情况下进行药物筛选。因此,这种潜在用途可能会促进新型抗癌药物的开发。

相似文献

1
High-Throughput Tumor-on-a-Chip Platform to Study Tumor-Stroma Interactions and Drug Pharmacokinetics.
Adv Healthc Mater. 2020 Nov;9(21):e2000880. doi: 10.1002/adhm.202000880. Epub 2020 Sep 23.
2
Micro-Engineered Organoid-on-a-Chip Based on Mesenchymal Stromal Cells to Predict Immunotherapy Responses of HCC Patients.
Adv Sci (Weinh). 2023 Sep;10(27):e2302640. doi: 10.1002/advs.202302640. Epub 2023 Jul 23.
7
Organotypic breast tumor model elucidates dynamic remodeling of tumor microenvironment.
Biomaterials. 2020 Apr;238:119853. doi: 10.1016/j.biomaterials.2020.119853. Epub 2020 Feb 7.
10
Biomimetic Model of Tumor Microenvironment on Microfluidic Platform.
Adv Healthc Mater. 2017 Aug;6(15). doi: 10.1002/adhm.201700196. Epub 2017 May 24.

引用本文的文献

1
Lung cancer intravasation-on-a-chip: Visualization and machine learning-assisted automatic quantification.
Bioact Mater. 2025 Jun 27;51:858-875. doi: 10.1016/j.bioactmat.2025.06.028. eCollection 2025 Sep.
2
Cancer-on-a-chip for precision cancer medicine.
Lab Chip. 2025 May 16. doi: 10.1039/d4lc01043d.
4
Highlight: microfluidic devices for cancer metastasis studies.
In Vitro Model. 2022 Jun 27;1(6):399-403. doi: 10.1007/s44164-022-00023-y. eCollection 2022 Dec.
5
Facilitation of Tumor Stroma-Targeted Therapy: Model Difficulty and Co-Culture Organoid Method.
Pharmaceuticals (Basel). 2025 Jan 8;18(1):62. doi: 10.3390/ph18010062.
6
Breaking the mold: 3D cell cultures reshaping the future of cancer research.
Front Cell Dev Biol. 2024 Nov 26;12:1507388. doi: 10.3389/fcell.2024.1507388. eCollection 2024.
7
Tumor-microenvironment-on-a-chip: the construction and application.
Cell Commun Signal. 2024 Oct 23;22(1):515. doi: 10.1186/s12964-024-01884-4.
8
Magnetically Integrated Tumor-Vascular Interface System to Mimic Pro-angiogenic Endothelial Dysregulations for On-Chip Drug Testing.
ACS Appl Mater Interfaces. 2024 Sep 11;16(36):47075-47088. doi: 10.1021/acsami.4c01766. Epub 2024 Aug 28.
9
Vascularized tumor models for the evaluation of drug delivery systems: a paradigm shift.
Drug Deliv Transl Res. 2024 Aug;14(8):2216-2241. doi: 10.1007/s13346-024-01580-3. Epub 2024 Apr 15.

本文引用的文献

1
CRISPR/Cas9-mediated mutagenesis to validate the synergy between PARP1 inhibition and chemotherapy in -mutated breast cancer cells.
Bioeng Transl Med. 2020 Jan 2;5(1):e10152. doi: 10.1002/btm2.10152. eCollection 2020 Jan.
2
A framework for advancing our understanding of cancer-associated fibroblasts.
Nat Rev Cancer. 2020 Mar;20(3):174-186. doi: 10.1038/s41568-019-0238-1. Epub 2020 Jan 24.
3
Breast cancer drug approvals by the US FDA from 1949 to 2018.
Nat Rev Drug Discov. 2020 Jan;19(1):11. doi: 10.1038/d41573-019-00201-w.
4
Vascularized cancer on a chip: The effect of perfusion on growth and drug delivery of tumor spheroid.
Biomaterials. 2020 Jan;229:119547. doi: 10.1016/j.biomaterials.2019.119547. Epub 2019 Oct 17.
5
Cancer-associated fibroblasts: an emerging target of anti-cancer immunotherapy.
J Hematol Oncol. 2019 Aug 28;12(1):86. doi: 10.1186/s13045-019-0770-1.
6
Mesenchymal Stem Cells and Cancer: Clinical Challenges and Opportunities.
Biomed Res Int. 2019 May 8;2019:2820853. doi: 10.1155/2019/2820853. eCollection 2019.
7
Colorectal tumor-on-a-chip system: A 3D tool for precision onco-nanomedicine.
Sci Adv. 2019 May 22;5(5):eaaw1317. doi: 10.1126/sciadv.aaw1317. eCollection 2019 May.
8
Cancer-Associated Fibroblasts Build and Secure the Tumor Microenvironment.
Front Cell Dev Biol. 2019 Apr 24;7:60. doi: 10.3389/fcell.2019.00060. eCollection 2019.
9
Comparisons of cancer-associated fibroblasts in the intratumoral stroma and invasive front in colorectal cancer.
Medicine (Baltimore). 2019 May;98(18):e15164. doi: 10.1097/MD.0000000000015164.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验