Suppr超能文献

SARS-CoV-2 的基因组和蛋白质组突变景观。

Genomic and proteomic mutation landscapes of SARS-CoV-2.

机构信息

Department of Biochemistry and Molecular Biology, Biological Models Laboratory, University of the Philippines Manila, Ermita, Manila, Philippines.

出版信息

J Med Virol. 2021 Mar;93(3):1702-1721. doi: 10.1002/jmv.26548. Epub 2020 Oct 8.

Abstract

The ongoing pandemic caused by a novel coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), affects thousands of people every day worldwide. Hence, drugs and vaccines effective against all variants of SARS-CoV-2 are crucial today. Viral genome mutations exist commonly which may impact the encoded proteins, possibly resulting to varied effectivity of detection tools and disease treatment. Thus, this study surveyed the SARS-CoV-2 genome and proteome and evaluated its mutation characteristics. Phylogenetic analyses of SARS-CoV-2 genes and proteins show three major clades and one minor clade (P6810S; ORF1ab). The overall frequency and densities of mutations in the genes and proteins of SARS-CoV-2 were observed. Nucleocapsid exhibited the highest mutation density among the structural proteins while the spike D614G was the most common, occurring mostly in genomes outside China and United States. ORF8 protein had the highest mutation density across all geographical areas. Moreover, mutation hotspots neighboring and at the catalytic site of RNA-dependent RNA polymerase were found that might challenge the binding and effectivity of remdesivir. Mutation coldspots may present as conserved diagnostic and therapeutic targets were found in ORF7b, ORF9b, and ORF14. These findings suggest that the virion's genotype and phenotype in a specific population should be considered in developing diagnostic tools and treatment options.

摘要

由新型冠状病毒(SARS-CoV-2)引起的持续大流行每天在全球影响着成千上万的人。因此,今天针对所有 SARS-CoV-2 变体有效的药物和疫苗至关重要。病毒基因组经常发生突变,这可能会影响编码蛋白,可能导致检测工具和疾病治疗的有效性发生变化。因此,本研究调查了 SARS-CoV-2 的基因组和蛋白质组,并评估了其突变特征。SARS-CoV-2 基因和蛋白质的系统发育分析显示出三个主要分支和一个小分支(P6810S;ORF1ab)。观察到 SARS-CoV-2 基因和蛋白质中的总体突变频率和密度。在结构蛋白中,核衣壳表现出最高的突变密度,而刺突 D614G 是最常见的,主要发生在中国和美国以外的基因组中。ORF8 蛋白在所有地理区域的突变密度最高。此外,还发现了 RNA 依赖性 RNA 聚合酶的临近和催化部位的突变热点,这可能会挑战瑞德西韦的结合和有效性。在 ORF7b、ORF9b 和 ORF14 中发现了突变冷点,这些冷点可能是保守的诊断和治疗靶点。这些发现表明,在开发诊断工具和治疗方案时,应考虑特定人群中病毒粒子的基因型和表型。

相似文献

1
Genomic and proteomic mutation landscapes of SARS-CoV-2.
J Med Virol. 2021 Mar;93(3):1702-1721. doi: 10.1002/jmv.26548. Epub 2020 Oct 8.
2
The extent of molecular variation in novel SARS-CoV-2 after the six-month global spread.
Infect Genet Evol. 2021 Jul;91:104800. doi: 10.1016/j.meegid.2021.104800. Epub 2021 Mar 5.
3
Proteo-Genomic Analysis of SARS-CoV-2: A Clinical Landscape of Single-Nucleotide Polymorphisms, COVID-19 Proteome, and Host Responses.
J Proteome Res. 2021 Mar 5;20(3):1591-1601. doi: 10.1021/acs.jproteome.0c00808. Epub 2021 Feb 8.
5
Global variation in SARS-CoV-2 proteome and its implication in pre-lockdown emergence and dissemination of 5 dominant SARS-CoV-2 clades.
Infect Genet Evol. 2021 Sep;93:104973. doi: 10.1016/j.meegid.2021.104973. Epub 2021 Jun 18.
9
Different selection dynamics of S and RdRp between SARS-CoV-2 genomes with and without the dominant mutations.
Infect Genet Evol. 2021 Jul;91:104796. doi: 10.1016/j.meegid.2021.104796. Epub 2021 Mar 3.
10
Mutation profile of SARS-CoV-2 genome in a sample from the first year of the pandemic in Colombia.
Infect Genet Evol. 2022 Jan;97:105192. doi: 10.1016/j.meegid.2021.105192. Epub 2021 Dec 18.

引用本文的文献

1
Progress and trends on machine learning in proteomics during 1997-2024: a bibliometric analysis.
Front Med (Lausanne). 2025 Aug 15;12:1594442. doi: 10.3389/fmed.2025.1594442. eCollection 2025.
2
SARS-CoV-2 Accessory Protein ORF8 Targets the Dimeric IgA Receptor pIgR.
Viruses. 2024 Jun 22;16(7):1008. doi: 10.3390/v16071008.
3
Development of Biomarkers and Prognosis Model of Mortality Risk in Patients with COVID-19.
J Inflamm Res. 2024 Apr 22;17:2445-2457. doi: 10.2147/JIR.S449497. eCollection 2024.
5
The RdRp genotyping of SARS-CoV-2 isolated from patients with different clinical spectrum of COVID-19.
BMC Infect Dis. 2024 Mar 4;24(1):281. doi: 10.1186/s12879-024-09146-x.
7
RNA barcode segments for SARS-CoV-2 identification from HCoVs and SARSr-CoV-2 lineages.
Virol Sin. 2024 Feb;39(1):156-168. doi: 10.1016/j.virs.2024.01.006. Epub 2024 Jan 20.
8
The role of SARS-CoV-2 N protein in diagnosis and vaccination in the context of emerging variants: present status and prospects.
Front Microbiol. 2023 Aug 14;14:1217567. doi: 10.3389/fmicb.2023.1217567. eCollection 2023.

本文引用的文献

1
On the origin and continuing evolution of SARS-CoV-2.
Natl Sci Rev. 2020 Jun;7(6):1012-1023. doi: 10.1093/nsr/nwaa036. Epub 2020 Mar 3.
4
Genome-Wide Identification and Characterization of Point Mutations in the SARS-CoV-2 Genome.
Osong Public Health Res Perspect. 2020 Jun;11(3):101-111. doi: 10.24171/j.phrp.2020.11.3.05.
7
Biochemical characterization of SARS-CoV-2 nucleocapsid protein.
Biochem Biophys Res Commun. 2020 Jun 30;527(3):618-623. doi: 10.1016/j.bbrc.2020.04.136. Epub 2020 Apr 30.
8
Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant.
J Transl Med. 2020 Apr 22;18(1):179. doi: 10.1186/s12967-020-02344-6.
9
Genomic characterization of a novel SARS-CoV-2.
Gene Rep. 2020 Jun;19:100682. doi: 10.1016/j.genrep.2020.100682. Epub 2020 Apr 16.
10
Neutralizing Antibodies against SARS-CoV-2 and Other Human Coronaviruses.
Trends Immunol. 2020 May;41(5):355-359. doi: 10.1016/j.it.2020.03.007. Epub 2020 Apr 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验