Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States.
Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States.
J Am Chem Soc. 2020 Oct 14;142(41):17265-17270. doi: 10.1021/jacs.0c07835. Epub 2020 Oct 5.
We recently introduced protein-metal-organic frameworks (protein-MOFs) as chemically designed protein crystals, composed of ferritin nodes that predictably assemble into 3D lattices upon coordination of various metal ions and ditopic, hydroxamate-based linkers. Owing to their unique tripartite construction, protein-MOFs possess extremely sparse lattice connectivity, suggesting that they might display unusual thermomechanical properties. Leveraging the synthetic modularity of ferritin-MOFs, we investigated the temperature-dependent structural dynamics of six distinct frameworks. Our results show that the thermostabilities of ferritin-MOFs can be tuned through the metal component or the presence of crowding agents. Our studies also reveal a framework that undergoes a reversible and isotropic first-order phase transition near-room temperature, corresponding to a 4% volumetric change within 1 °C and a hysteresis window of ∼10 °C. This highly cooperative crystal-to-crystal transformation, which stems from the soft crystallinity of ferritin-MOFs, illustrates the advantage of modular construction strategies in discovering tunable-and unpredictable-material properties.
我们最近提出了蛋白质-金属有机骨架(protein-MOFs),将其作为化学设计的蛋白质晶体,由铁蛋白节点组成,这些节点在各种金属离子和双齿、偕二羟肟酸基配体配位时可预测地组装成 3D 晶格。由于其独特的三分体结构,protein-MOFs 具有非常稀疏的晶格连接性,表明它们可能具有不寻常的热机械性能。利用铁蛋白-MOFs 的合成模块化,我们研究了六个不同框架的温度依赖性结构动力学。我们的结果表明,铁蛋白-MOFs 的热稳定性可以通过金属成分或拥挤剂的存在来调节。我们的研究还揭示了一个在室温附近经历可逆各向同性一级相变的框架,在 1°C 内发生 4%的体积变化,滞后窗口约为 10°C。这种高度协同的晶态到晶态的转变源于铁蛋白-MOFs 的柔软结晶性,说明了模块化构建策略在发现可调谐和不可预测的材料性能方面的优势。