Suppr超能文献

从单细胞转录组学数据中选择基因以最优地预测细胞在组织中的位置。

Gene selection for optimal prediction of cell position in tissues from single-cell transcriptomics data.

机构信息

Institute for Computational Biomedicine, Faculty of Medicine, Heidelberg University Hospital and Heidelberg University, Heidelberg, Germany.

Department of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, Slovenia.

出版信息

Life Sci Alliance. 2020 Sep 24;3(11). doi: 10.26508/lsa.202000867. Print 2020 Nov.

Abstract

Single-cell RNA-sequencing (scRNAseq) technologies are rapidly evolving. Although very informative, in standard scRNAseq experiments, the spatial organization of the cells in the tissue of origin is lost. Conversely, spatial RNA-seq technologies designed to maintain cell localization have limited throughput and gene coverage. Mapping scRNAseq to genes with spatial information increases coverage while providing spatial location. However, methods to perform such mapping have not yet been benchmarked. To fill this gap, we organized the DREAM Single-Cell Transcriptomics challenge focused on the spatial reconstruction of cells from the embryo from scRNAseq data, leveraging as silver standard, genes with in situ hybridization data from the Berkeley Transcription Network Project reference atlas. The 34 participating teams used diverse algorithms for gene selection and location prediction, while being able to correctly localize clusters of cells. Selection of predictor genes was essential for this task. Predictor genes showed a relatively high expression entropy, high spatial clustering and included prominent developmental genes such as gap and pair-rule genes and tissue markers. Application of the top 10 methods to a zebra fish embryo dataset yielded similar performance and statistical properties of the selected genes than in the data. This suggests that methods developed in this challenge are able to extract generalizable properties of genes that are useful to accurately reconstruct the spatial arrangement of cells in tissues.

摘要

单细胞 RNA 测序 (scRNAseq) 技术正在迅速发展。尽管非常有信息量,但在标准的 scRNAseq 实验中,细胞在原始组织中的空间组织会丢失。相反,旨在保持细胞定位的空间 RNA-seq 技术的通量和基因覆盖率有限。将 scRNAseq 映射到具有空间信息的基因可以增加覆盖范围,同时提供空间位置。然而,执行这种映射的方法尚未经过基准测试。为了填补这一空白,我们组织了 DREAM 单细胞转录组学挑战赛,该挑战赛专注于从 scRNAseq 数据中对胚胎细胞进行空间重建,利用 Berkeley 转录网络项目参考图谱中的原位杂交数据作为银标准。34 个参赛团队使用了不同的算法来进行基因选择和位置预测,同时能够正确定位细胞簇。预测器基因的选择对于这项任务至关重要。预测器基因表现出相对较高的表达熵、高空间聚类,并且包含明显的发育基因,如缺口和配对规则基因和组织标记。将前 10 种方法应用于斑马鱼胚胎数据集,得出的选择基因的性能和统计特性与数据相似。这表明,在本次挑战赛中开发的方法能够提取出对准确重建组织中细胞空间排列有用的基因的可推广特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6ae/7536825/35357b288e27/LSA-2020-00867_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验