Suppr超能文献

基于深度学习的小儿脑磁共振单光子和质子放射治疗的合成 CT 生成。

Deep learning-based synthetic CT generation for paediatric brain MR-only photon and proton radiotherapy.

机构信息

Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, , The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, , The Netherlands.

Department of Radiotherapy, Division of Imaging & Oncology, University Medical Center Utrecht, , The Netherlands; Computational Imaging Group for MR diagnostics & therapy, Center for Image Sciences, University Medical Center Utrecht, , The Netherlands.

出版信息

Radiother Oncol. 2020 Dec;153:197-204. doi: 10.1016/j.radonc.2020.09.029. Epub 2020 Sep 23.

Abstract

BACKGROUND AND PURPOSE

To enable accurate magnetic resonance imaging (MRI)-based dose calculations, synthetic computed tomography (sCT) images need to be generated. We aim at assessing the feasibility of dose calculations from MRI acquired with a heterogeneous set of imaging protocol for paediatric patients affected by brain tumours.

MATERIALS AND METHODS

Sixty paediatric patients undergoing brain radiotherapy were included. MR imaging protocols varied among patients, and data heterogeneity was maintained in train/validation/test sets. Three 2D conditional generative adversarial networks (cGANs) were trained to generate sCT from T1-weighted MRI, considering the three orthogonal planes and its combination (multi-plane sCT). For each patient, median and standard deviation (σ) of the three views were calculated, obtaining a combined sCT and a proxy for uncertainty map, respectively. The sCTs were evaluated against the planning CT in terms of image similarity and accuracy for photon and proton dose calculations.

RESULTS

A mean absolute error of 61 ± 14 HU (mean±1σ) was obtained in the intersection of the body contours between CT and sCT. The combined multi-plane sCTs performed better than sCTs from any single plane. Uncertainty maps highlighted that multi-plane sCTs differed at the body contours and air cavities. A dose difference of -0.1 ± 0.3% and 0.1 ± 0.4% was obtained on the D > 90% of the prescribed dose and mean γ pass-rate of 99.5 ± 0.8% and 99.2 ± 1.1% for photon and proton planning, respectively.

CONCLUSION

Accurate MR-based dose calculation using a combination of three orthogonal planes for sCT generation is feasible for paediatric brain cancer patients, even when training on a heterogeneous dataset.

摘要

背景与目的

为了实现精确的磁共振成像(MRI)剂量计算,需要生成合成计算机断层扫描(sCT)图像。我们旨在评估从接受脑部肿瘤放射治疗的儿科患者获取的具有异质成像协议的 MRI 进行剂量计算的可行性。

材料与方法

本研究共纳入 60 名接受脑部放射治疗的儿科患者。患者的 MRI 协议各不相同,并且在训练/验证/测试集中保留了数据异质性。使用三个二维条件生成对抗网络(cGAN)从 T1 加权 MRI 生成 sCT,考虑到三个正交平面及其组合(多平面 sCT)。对于每位患者,计算三个视图的中位数和标准差(σ),分别获得组合 sCT 和不确定性图的代理。从图像相似性和光子和质子剂量计算的准确性方面评估 sCT 与计划 CT。

结果

在 CT 和 sCT 之间的身体轮廓的交点处获得了 61±14HU(均值±1σ)的平均绝对误差。组合的多平面 sCT 比任何单个平面的 sCT 表现更好。不确定性图突出显示了多平面 sCT 在身体轮廓和空气腔之间的差异。在 D>90%的处方剂量上获得了-0.1±0.3%和 0.1±0.4%的剂量差异,并且光子和质子计划的平均γ通过率分别为 99.5±0.8%和 99.2±1.1%。

结论

即使在使用异质数据集进行训练的情况下,使用三个正交平面的组合生成 sCT 来实现准确的基于 MRI 的剂量计算对于儿科脑癌患者也是可行的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验