Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, Minas Gerais, Brazil.
Institute of Chemistry, State University of Campinas, 13083-859, Campinas, São Paulo, Brazil.
Anal Chim Acta. 2020 Oct 2;1132:1-9. doi: 10.1016/j.aca.2020.07.028. Epub 2020 Jul 30.
Three-dimensional printing techniques have been widely used in the fabrication of new materials applied to energy, sensing and electronics due to unique advantages, such as fast prototyping, reduced waste generation, and multiple fabrication designs. In this paper, the production of a conductive 3D-printing filament composed of Ni(OH) microparticles and graphene within a polylactic acid matrix (Ni-G-PLA) is reported. The nanocomposite was characterized by thermogravimetric, energy-dispersive X-ray spectroscopic, scanning electronic microscopic, Raman spectroscopic and electrochemical techniques. Characteristics such as printability (using fused deposition modelling), electrical conductivity and mechanical stability of the polymer nanocomposite were evaluated before and after 3D printing. The novel 3D-printed disposable electrode was applied for selective detection of glucose (enzyme-less sensor) with a detection limit of 2.4 μmol L, free from the interference of ascorbic acid, urea and uric acid, compounds typically found in biological samples. The sensor was assembled in a portable electrochemical system that enables fast (160 injection h), precise (RSD < 5%) and selective determination of glucose without the need of enzymes (electrocatalytic properties of the Ni-G-PLA nanocomposite). The obtained results showed that Ni-G-PLA is a promising material for the production of disposable sensors for selective detection of glucose using a simple and low-cost 3D-printer.
三维打印技术由于其独特的优势,如快速原型制作、减少废物产生和多种制造设计,已广泛应用于新型材料在能源、传感和电子领域的制造。本文报道了一种由 Ni(OH) 微米颗粒和石墨烯在聚乳酸基体(Ni-G-PLA)内组成的导电 3D 打印长丝的制备。采用热重分析、能量色散 X 射线光谱、扫描电子显微镜、拉曼光谱和电化学技术对纳米复合材料进行了表征。在 3D 打印前后评估了聚合物纳米复合材料的可打印性(使用熔融沉积建模)、导电性和机械稳定性等特性。新型 3D 打印一次性电极用于选择性检测葡萄糖(无酶传感器),检测限为 2.4 μmol L,不受生物样品中常见的抗坏血酸、尿素和尿酸等化合物的干扰。传感器组装在一个便携式电化学系统中,该系统能够快速(160 次注射 h)、精确(RSD < 5%)和选择性地测定葡萄糖,而无需酶(Ni-G-PLA 纳米复合材料的电催化性能)。所得结果表明,Ni-G-PLA 是一种很有前途的材料,可用于使用简单且低成本的 3D 打印机生产用于选择性检测葡萄糖的一次性传感器。