Department of Information Systems and Analytics, Leavey School of Business, Santa Clara University, Santa Clara, CA, USA.
Department of Operations and Information Systems, David Eccles School of Business, University of Utah, Salt Lake City, UT, USA.
J Biomed Inform. 2020 Nov;111:103565. doi: 10.1016/j.jbi.2020.103565. Epub 2020 Sep 25.
To develop an effective and scalable individual-level patient cost prediction method by automatically learning hidden temporal patterns from multivariate time series data in patient insurance claims using a convolutional neural network (CNN) architecture.
We used three years of medical and pharmacy claims data from 2013 to 2016 from a healthcare insurer, where data from the first two years were used to build the model to predict costs in the third year. The data consisted of the multivariate time series of cost, visit and medical features that were shaped as images of patients' health status (i.e., matrices with time windows on one dimension and the medical, visit and cost features on the other dimension). Patients' multivariate time series images were given to a CNN method with a proposed architecture. After hyper-parameter tuning, the proposed architecture consisted of three building blocks of convolution and pooling layers with an LReLU activation function and a customized kernel size at each layer for healthcare data. The proposed CNN learned temporal patterns became inputs to a fully connected layer. We benchmarked the proposed method against three other methods: (1) a spike temporal pattern detection method, as the most accurate method for healthcare cost prediction described to date in the literature; (2) a symbolic temporal pattern detection method, as the most common approach for leveraging healthcare temporal data; and (3) the most commonly used CNN architectures for image pattern detection (i.e., AlexNet, VGGNet and ResNet) (via transfer learning). Moreover, we assessed the contribution of each type of data (i.e., cost, visit and medical). Finally, we externally validated the proposed method against a separate cohort of patients. All prediction performances were measured in terms of mean absolute percentage error (MAPE).
The proposed CNN configuration outperformed the spike temporal pattern detection and symbolic temporal pattern detection methods with a MAPE of 1.67 versus 2.02 and 3.66, respectively (p < 0.01). The proposed CNN outperformed ResNet, AlexNet and VGGNet with MAPEs of 4.59, 4.85 and 5.06, respectively (p < 0.01). Removing medical, visit and cost features resulted in MAPEs of 1.98, 1.91 and 2.04, respectively (p < 0.01).
Feature learning through the proposed CNN configuration significantly improved individual-level healthcare cost prediction. The proposed CNN was able to outperform temporal pattern detection methods that look for a pre-defined set of pattern shapes, since it is capable of extracting a variable number of patterns with various shapes. Temporal patterns learned from medical, visit and cost data made significant contributions to the prediction performance. Hyper-parameter tuning showed that considering three-month data patterns has the highest prediction accuracy. Our results showed that patients' images extracted from multivariate time series data are different from regular images, and hence require unique designs of CNN architectures. The proposed method for converting multivariate time series data of patients into images and tuning them for convolutional learning could be applied in many other healthcare applications with multivariate time series data.
通过使用卷积神经网络(CNN)架构,从患者保险索赔中的多维时间序列数据中自动学习隐藏的时间模式,开发一种有效且可扩展的个体患者成本预测方法。
我们使用了 2013 年至 2016 年期间来自一家医疗保险公司的三年医疗和药房索赔数据,其中前两年的数据用于构建模型以预测第三年的成本。数据由成本、就诊和医疗特征的多维时间序列组成,这些特征被塑造成患者健康状况的图像(即具有时间窗口的矩阵,一个维度和医疗、就诊和成本特征的另一个维度)。患者的多维时间序列图像被提供给具有提出架构的 CNN 方法。在超参数调整后,所提出的架构由卷积和池化层的三个构建块组成,具有 LReLU 激活函数和每个层的自定义内核大小,适用于医疗保健数据。所提出的 CNN 学习的时间模式成为全连接层的输入。我们将所提出的方法与其他三种方法进行了基准测试:(1)尖峰时间模式检测方法,是迄今为止文献中描述的最准确的医疗保健成本预测方法;(2)符号时间模式检测方法,是利用医疗保健时间数据的最常见方法;(3)用于图像模式检测的最常用的 CNN 架构(即 AlexNet、VGGNet 和 ResNet)(通过迁移学习)。此外,我们评估了每种类型的数据(即成本、就诊和医疗)的贡献。最后,我们针对单独的患者队列对所提出的方法进行了外部验证。所有预测性能均以平均绝对百分比误差(MAPE)衡量。
所提出的 CNN 配置在 MAPE 方面优于尖峰时间模式检测和符号时间模式检测方法,分别为 1.67、2.02 和 3.66(p<0.01)。所提出的 CNN 优于 ResNet、AlexNet 和 VGGNet,MAPE 分别为 4.59、4.85 和 5.06(p<0.01)。去除医疗、就诊和成本特征的 MAPE 分别为 1.98、1.91 和 2.04(p<0.01)。
通过提出的 CNN 配置进行特征学习,显著提高了个体医疗保健成本预测的准确性。所提出的 CNN 能够超越寻找预定义模式形状的时间模式检测方法,因为它能够提取具有各种形状的可变数量的模式。从医疗、就诊和成本数据中学习到的时间模式对预测性能做出了重大贡献。超参数调整表明,考虑三个月的数据模式具有最高的预测准确性。我们的结果表明,从多维时间序列数据中提取的患者图像与常规图像不同,因此需要 CNN 架构的独特设计。将患者的多维时间序列数据转换为图像并对其进行卷积学习的方法可以应用于具有多维时间序列数据的许多其他医疗保健应用中。