Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
J Biol Chem. 2020 Dec 4;295(49):16813-16825. doi: 10.1074/jbc.RA120.015715. Epub 2020 Sep 27.
Gle1 is a conserved, essential regulator of DEAD-box RNA helicases, with critical roles defined in mRNA export, translation initiation, translation termination, and stress granule formation. Mechanisms that specify which, where, and when DDXs are targeted by Gle1 are critical to understand. In addition to roles for stress-induced phosphorylation and inositol hexakisphosphate binding in specifying Gle1 function, Gle1 oligomerizes via its N-terminal domain in a phosphorylation-dependent manner. However, a thorough analysis of the role for Gle1 self-association is lacking. Here, we find that Gle1 self-association is driven by two distinct regions: a coiled-coil domain and a novel 10-amino acid aggregation-prone region, both of which are necessary for proper Gle1 oligomerization. By exogenous expression in HeLa cells, we tested the function of a series of mutations that impact the oligomerization domains of the Gle1A and Gle1B isoforms. Gle1 oligomerization is necessary for many, but not all aspects of Gle1A and Gle1B function, and the requirements for each interaction domain differ. Whereas the coiled-coil domain and aggregation-prone region additively contribute to competent mRNA export and stress granule formation, both self-association domains are independently required for regulation of translation under cellular stress. In contrast, Gle1 self-association is dispensable for phosphorylation and nonstressed translation initiation. Collectively, we reveal self-association functions as an additional mode of Gle1 regulation to ensure proper mRNA export and translation. This work also provides further insight into the mechanisms underlying human disease mutants found in prenatally lethal forms of arthrogryposis.
Gle1 是一种保守的、必需的 DEAD-box RNA 解旋酶调节因子,在 mRNA 输出、翻译起始、翻译终止和应激颗粒形成中具有关键作用。阐明 Gle1 靶向特定的 DDXs 的机制对于理解其功能至关重要。除了应激诱导的磷酸化和肌醇六磷酸结合在指定 Gle1 功能中的作用外,Gle1 还通过其 N 端结构域以磷酸化依赖的方式寡聚化。然而,对 Gle1 自组装作用的全面分析还很缺乏。在这里,我们发现 Gle1 自组装是由两个不同的区域驱动的:一个卷曲螺旋结构域和一个新的 10 个氨基酸聚集倾向区域,这两个区域对于 Gle1 寡聚化都是必需的。通过在 HeLa 细胞中外源表达,我们测试了一系列影响 Gle1A 和 Gle1B 同工型寡聚化结构域的突变的功能。Gle1 寡聚化对于 Gle1A 和 Gle1B 功能的许多方面都是必需的,但不是所有方面都是必需的,并且每个相互作用结构域的要求也不同。虽然卷曲螺旋结构域和聚集倾向区域对有效的 mRNA 输出和应激颗粒形成具有加性贡献,但这两个自组装结构域在细胞应激下调节翻译都是独立需要的。相比之下,Gle1 自组装对于磷酸化和非应激翻译起始是可有可无的。总的来说,我们揭示了自组装功能作为 Gle1 调节的另一种模式,以确保适当的 mRNA 输出和翻译。这项工作还进一步深入了解了在产前致死性先天性肌营养不良症中发现的人类疾病突变体的潜在机制。