Mathur Maya B, VanderWeele Tyler J
Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA.
Quantitative Sciences Unit, Stanford University, Palo Alto, CA.
J Am Stat Assoc. 2020;115(529):163-172. doi: 10.1080/01621459.2018.1529598. Epub 2019 Apr 30.
Random-effects meta-analyses of observational studies can produce biased estimates if the synthesized studies are subject to unmeasured confounding. We propose sensitivity analyses quantifying the extent to which unmeasured confounding of specified magnitude could reduce to below a certain threshold the proportion of true effect sizes that are scientifically meaningful. We also develop converse methods to estimate the strength of confounding capable of reducing the proportion of scientifically meaningful true effects to below a chosen threshold. These methods apply when a "bias factor" is assumed to be normally distributed across studies or is assessed across a range of fixed values. Our estimators are derived using recently proposed sharp bounds on confounding bias within a single study that do not make assumptions regarding the unmeasured confounders themselves or the functional form of their relationships with the exposure and outcome of interest. We provide an R package, EValue, and a free website that compute point estimates and inference and produce plots for conducting such sensitivity analyses. These methods facilitate principled use of random-effects meta-analyses of observational studies to assess the strength of causal evidence for a hypothesis.
如果纳入的观察性研究存在未测量的混杂因素,随机效应荟萃分析可能会产生有偏估计。我们提出了敏感性分析方法,以量化特定程度的未测量混杂因素能在多大程度上使具有科学意义的真实效应大小的比例降至某个阈值以下。我们还开发了反向方法,用于估计能够将具有科学意义的真实效应比例降至选定阈值以下的混杂强度。当假定“偏差因子”在各项研究中呈正态分布或在一系列固定值范围内进行评估时,这些方法适用。我们的估计量是利用最近在单个研究中提出的混杂偏差的严格界限推导出来的,这些界限不对未测量的混杂因素本身或它们与感兴趣的暴露因素和结局之间关系的函数形式做任何假设。我们提供了一个R包EValue和一个免费网站,用于计算点估计和推断,并生成用于进行此类敏感性分析的图表。这些方法有助于合理地运用观察性研究的随机效应荟萃分析来评估某个假设的因果证据强度。