Suppr超能文献

转移性尿路上皮癌免疫检查点抑制剂治疗反应的生物标志物。

Biomarkers of the Response to Immune Checkpoint Inhibitors in Metastatic Urothelial Carcinoma.

机构信息

Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Front Immunol. 2020 Aug 25;11:1900. doi: 10.3389/fimmu.2020.01900. eCollection 2020.

Abstract

The mechanisms underlying the resistance to immune checkpoint inhibitors (ICIs) therapy in metastatic urothelial carcinoma (mUC) patients are not clear. It is of great significance to discern mUC patients who could benefit from ICI therapy in clinical practice. In this study, we performed machine learning method and selected 10 prognostic genes for constructing the immunotherapy response nomogram for mUC patients. The calibration plot suggested that the nomogram had an optimal agreement with actual observations when predicting the 1- and 1.5-year survival probabilities. The prognostic nomogram had a favorable discrimination of overall survival of mUC patients, with area under the curve values of 0.815, 0.752, and 0.805 for ICI response (ICIR) prediction in the training cohort, testing cohort, and combined cohort, respectively. A further decision curve analysis showed that the prognostic nomogram was superior to either mutation burden or neoantigen burden for overall survival prediction when the threshold probability was >0.35. The immune infiltrate analysis indicated that the low ICIR-Score values in mUC patients were significantly related to CD8 T cell infiltration and immune checkpoint-associated signatures. We also identified differentially mutated genes, which could act as driver genes and regulate the response to ICI therapy. In conclusion, we developed and validated an immunotherapy-responsive nomogram for mUC patients, which could be conveniently used for the estimate of ICI response and the prediction of overall survival probability for mUC patients.

摘要

在转移性尿路上皮癌 (mUC) 患者中,免疫检查点抑制剂 (ICIs) 治疗耐药的机制尚不清楚。在临床实践中,辨别哪些 mUC 患者可能从 ICI 治疗中获益具有重要意义。在这项研究中,我们采用机器学习方法,选择了 10 个预后基因,用于构建 mUC 患者免疫治疗反应列线图。校准图表明,该列线图在预测 1 年和 1.5 年生存率方面与实际观察结果具有最佳一致性。预后列线图对 mUC 患者的总生存率具有良好的区分能力,在训练队列、测试队列和联合队列中,曲线下面积值分别为 0.815、0.752 和 0.805,用于预测 ICI 反应 (ICIR)。进一步的决策曲线分析表明,当阈值概率>0.35 时,与突变负担或新抗原负担相比,预后列线图在预测总生存率方面更具优势。免疫浸润分析表明,mUC 患者低 ICIR-Score 值与 CD8 T 细胞浸润和免疫检查点相关特征显著相关。我们还确定了差异突变基因,它们可以作为驱动基因,调节对 ICI 治疗的反应。总之,我们开发并验证了 mUC 患者的免疫治疗反应列线图,该列线图可方便地用于估计 ICI 反应和预测 mUC 患者的总生存率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd43/7477044/e998f6820671/fimmu-11-01900-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验