Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, 48109, USA.
Department of Biostatistics, University of Michigan, Ann Arbor, 48109, USA.
Sci Rep. 2020 Sep 28;10(1):15937. doi: 10.1038/s41598-020-72813-x.
Diabetic retinopathy (DR) is a severe retinal disorder that can lead to vision loss, however, its underlying mechanism has not been fully understood. Previous studies have taken advantage of Optical Coherence Tomography (OCT) and shown that the thickness of individual retinal layers are affected in patients with DR. However, most studies analyzed the thickness by calculating summary statistics from retinal thickness maps of the macula region. This study aims to apply a density function-based statistical framework to the thickness data obtained through OCT, and to compare the predictive power of various retinal layers to assess the severity of DR. We used a prototype data set of 107 subjects which are comprised of 38 non-proliferative DR (NPDR), 28 without DR (NoDR), and 41 controls. Based on the thickness profiles, we constructed novel features which capture the variation in the distribution of the pixel-wise retinal layer thicknesses from OCT. We quantified the predictive power of each of the retinal layers to distinguish between all three pairwise comparisons of the severity in DR (NoDR vs NPDR, controls vs NPDR, and controls vs NoDR). When applied to this preliminary DR data set, our density-based method demonstrated better predictive results compared with simple summary statistics. Furthermore, our results indicate considerable differences in retinal layer structuring based on the severity of DR. We found that: (a) the outer plexiform layer is the most discriminative layer for classifying NoDR vs NPDR; (b) the outer plexiform, inner nuclear and ganglion cell layers are the strongest biomarkers for discriminating controls from NPDR; and (c) the inner nuclear layer distinguishes best between controls and NoDR.
糖尿病视网膜病变(DR)是一种严重的视网膜疾病,可导致视力丧失,但其潜在机制尚未完全了解。先前的研究利用光学相干断层扫描(OCT)发现,DR 患者的个别视网膜层厚度受到影响。然而,大多数研究通过计算黄斑区域视网膜厚度图的汇总统计数据来分析厚度。本研究旨在将基于密度函数的统计框架应用于通过 OCT 获得的厚度数据,并比较各种视网膜层对评估 DR 严重程度的预测能力。我们使用一个包含 107 名受试者的原型数据集,其中包括 38 名非增生性 DR(NPDR)、28 名无 DR(NoDR)和 41 名对照者。基于厚度曲线,我们构建了新的特征,这些特征捕捉了来自 OCT 的像素级视网膜层厚度分布的变化。我们量化了每个视网膜层区分 DR 严重程度的所有三种两两比较(NoDR 与 NPDR、对照者与 NPDR 和对照者与 NoDR)的预测能力。当应用于这个初步的 DR 数据集时,我们基于密度的方法与简单的汇总统计相比表现出更好的预测结果。此外,我们的结果表明,基于 DR 的严重程度,视网膜层结构存在相当大的差异。我们发现:(a)外丛状层是区分 NoDR 与 NPDR 的最具鉴别力的层;(b)外丛状层、内核层和节细胞层是区分对照者与 NPDR 的最强生物标志物;(c)内核层在区分对照者与 NoDR 方面表现最佳。